| L(s) = 1 | + (−2.02 + 1.17i)3-s − 2.43·5-s + (0.984 + 0.568i)7-s + (−1.75 + 3.04i)9-s + (16.8 − 9.75i)11-s + (7.05 + 10.9i)13-s + (4.94 − 2.85i)15-s + (−11.0 + 19.1i)17-s + (−26.0 − 15.0i)19-s − 2.66·21-s + (−32.0 + 18.4i)23-s − 19.0·25-s − 29.3i·27-s + (−21.5 − 37.3i)29-s − 15.3i·31-s + ⋯ |
| L(s) = 1 | + (−0.676 + 0.390i)3-s − 0.487·5-s + (0.140 + 0.0812i)7-s + (−0.195 + 0.337i)9-s + (1.53 − 0.886i)11-s + (0.542 + 0.839i)13-s + (0.329 − 0.190i)15-s + (−0.649 + 1.12i)17-s + (−1.37 − 0.791i)19-s − 0.126·21-s + (−1.39 + 0.804i)23-s − 0.762·25-s − 1.08i·27-s + (−0.744 − 1.28i)29-s − 0.493i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0566i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.998 + 0.0566i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.00747923 - 0.263867i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.00747923 - 0.263867i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 + (-7.05 - 10.9i)T \) |
| good | 3 | \( 1 + (2.02 - 1.17i)T + (4.5 - 7.79i)T^{2} \) |
| 5 | \( 1 + 2.43T + 25T^{2} \) |
| 7 | \( 1 + (-0.984 - 0.568i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (-16.8 + 9.75i)T + (60.5 - 104. i)T^{2} \) |
| 17 | \( 1 + (11.0 - 19.1i)T + (-144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (26.0 + 15.0i)T + (180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (32.0 - 18.4i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (21.5 + 37.3i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + 15.3iT - 961T^{2} \) |
| 37 | \( 1 + (-25.7 - 44.6i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (5.36 + 9.29i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (8.04 + 4.64i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 - 27.4iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 73.3T + 2.80e3T^{2} \) |
| 59 | \( 1 + (18.2 + 10.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (53.0 - 91.9i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-4.45 + 2.57i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + (13.0 + 7.51i)T + (2.52e3 + 4.36e3i)T^{2} \) |
| 73 | \( 1 - 3.70T + 5.32e3T^{2} \) |
| 79 | \( 1 - 78.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 110. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-17.6 - 30.5i)T + (-3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + (59.2 - 102. i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49051324831798185707519512677, −10.86278259337773023795695408623, −9.670670356131792524875715050102, −8.686898147865414148745124792185, −7.957736153047829945642637650839, −6.31353582852862021308691255722, −6.08006942366076996525852072093, −4.37073204759588699729468293824, −3.89632006855211318516541072334, −1.87096716879585161138204348096,
0.12175272301501021343719686322, 1.71832009655444093832035393094, 3.61227972080889638312023897888, 4.55982962878544946892254030276, 5.99400944744573718786579811396, 6.62240244038693935080487456983, 7.63289701533753112995928329507, 8.713640382889753425476006010740, 9.602846889127563378106223910158, 10.80247369411397475562040707409