L(s) = 1 | + (−3.45 + 1.99i)3-s + 6.36·5-s + (−5.32 − 3.07i)7-s + (3.46 − 6.00i)9-s + (−4.55 + 2.63i)11-s + (−0.635 − 12.9i)13-s + (−22.0 + 12.7i)15-s + (−16.0 + 27.8i)17-s + (−4.23 − 2.44i)19-s + 24.5·21-s + (8.99 − 5.19i)23-s + 15.5·25-s − 8.25i·27-s + (−18.6 − 32.3i)29-s − 39.4i·31-s + ⋯ |
L(s) = 1 | + (−1.15 + 0.665i)3-s + 1.27·5-s + (−0.760 − 0.439i)7-s + (0.385 − 0.666i)9-s + (−0.414 + 0.239i)11-s + (−0.0488 − 0.998i)13-s + (−1.46 + 0.847i)15-s + (−0.944 + 1.63i)17-s + (−0.223 − 0.128i)19-s + 1.16·21-s + (0.391 − 0.225i)23-s + 0.622·25-s − 0.305i·27-s + (−0.644 − 1.11i)29-s − 1.27i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.451 + 0.892i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.451 + 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.198792 - 0.323325i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.198792 - 0.323325i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (0.635 + 12.9i)T \) |
good | 3 | \( 1 + (3.45 - 1.99i)T + (4.5 - 7.79i)T^{2} \) |
| 5 | \( 1 - 6.36T + 25T^{2} \) |
| 7 | \( 1 + (5.32 + 3.07i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (4.55 - 2.63i)T + (60.5 - 104. i)T^{2} \) |
| 17 | \( 1 + (16.0 - 27.8i)T + (-144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (4.23 + 2.44i)T + (180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-8.99 + 5.19i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (18.6 + 32.3i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + 39.4iT - 961T^{2} \) |
| 37 | \( 1 + (16.8 + 29.2i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (15.9 + 27.6i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (7.50 + 4.33i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 - 69.4iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 19.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + (80.1 + 46.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-29.2 + 50.6i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-113. + 65.4i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + (40.2 + 23.2i)T + (2.52e3 + 4.36e3i)T^{2} \) |
| 73 | \( 1 + 28.9T + 5.32e3T^{2} \) |
| 79 | \( 1 - 73.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 6.44iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (41.4 + 71.7i)T + (-3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-28.4 + 49.3i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56281675520161501444196270614, −10.06261194710503059518534520283, −9.284858116968894961187913046266, −7.907158715942576164103767388150, −6.40443921414720667604683315323, −5.99107478571494714553053864902, −5.05577243616954062218791693962, −3.87403610868585358027576018812, −2.19476427243488070828132163527, −0.17898775053534477764840027404,
1.57703155684820358377242280462, 2.88656190059502215311821061700, 4.95812105430983240014568723333, 5.63938132088396101288558290315, 6.66277378633139412120882097020, 6.96761042299420062585504633657, 8.844572953325426417546234140589, 9.471389290085343568163842889461, 10.47149483243446013387436789823, 11.41544496554546230814868483708