Properties

Label 2-416-52.47-c1-0-3
Degree $2$
Conductor $416$
Sign $-0.602 - 0.797i$
Analytic cond. $3.32177$
Root an. cond. $1.82257$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.16i·3-s + (1.68 + 1.68i)5-s + (2.12 + 2.12i)7-s − 7.03·9-s + (1.43 + 1.43i)11-s + (2.12 − 2.91i)13-s + (−5.34 + 5.34i)15-s − 5.16i·17-s + (4.60 − 4.60i)19-s + (−6.72 + 6.72i)21-s − 4.95·23-s + 0.700i·25-s − 12.7i·27-s + 2.09·29-s + (−0.602 + 0.602i)31-s + ⋯
L(s)  = 1  + 1.82i·3-s + (0.755 + 0.755i)5-s + (0.802 + 0.802i)7-s − 2.34·9-s + (0.432 + 0.432i)11-s + (0.588 − 0.808i)13-s + (−1.38 + 1.38i)15-s − 1.25i·17-s + (1.05 − 1.05i)19-s + (−1.46 + 1.46i)21-s − 1.03·23-s + 0.140i·25-s − 2.46i·27-s + 0.388·29-s + (−0.108 + 0.108i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(416\)    =    \(2^{5} \cdot 13\)
Sign: $-0.602 - 0.797i$
Analytic conductor: \(3.32177\)
Root analytic conductor: \(1.82257\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{416} (255, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 416,\ (\ :1/2),\ -0.602 - 0.797i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.738153 + 1.48325i\)
\(L(\frac12)\) \(\approx\) \(0.738153 + 1.48325i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + (-2.12 + 2.91i)T \)
good3 \( 1 - 3.16iT - 3T^{2} \)
5 \( 1 + (-1.68 - 1.68i)T + 5iT^{2} \)
7 \( 1 + (-2.12 - 2.12i)T + 7iT^{2} \)
11 \( 1 + (-1.43 - 1.43i)T + 11iT^{2} \)
17 \( 1 + 5.16iT - 17T^{2} \)
19 \( 1 + (-4.60 + 4.60i)T - 19iT^{2} \)
23 \( 1 + 4.95T + 23T^{2} \)
29 \( 1 - 2.09T + 29T^{2} \)
31 \( 1 + (0.602 - 0.602i)T - 31iT^{2} \)
37 \( 1 + (4.64 - 4.64i)T - 37iT^{2} \)
41 \( 1 + (2.79 + 2.79i)T + 41iT^{2} \)
43 \( 1 + 10.4T + 43T^{2} \)
47 \( 1 + (-0.746 - 0.746i)T + 47iT^{2} \)
53 \( 1 - 3.37T + 53T^{2} \)
59 \( 1 + (3.22 + 3.22i)T + 59iT^{2} \)
61 \( 1 - 12.4T + 61T^{2} \)
67 \( 1 + (-5.26 + 5.26i)T - 67iT^{2} \)
71 \( 1 + (1.16 - 1.16i)T - 71iT^{2} \)
73 \( 1 + (-7.03 + 7.03i)T - 73iT^{2} \)
79 \( 1 - 0.171iT - 79T^{2} \)
83 \( 1 + (7.77 - 7.77i)T - 83iT^{2} \)
89 \( 1 + (-1.20 + 1.20i)T - 89iT^{2} \)
97 \( 1 + (-1.95 - 1.95i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.39912723099727690122572949215, −10.42828221697934424576073610738, −9.833005139389433361422176233518, −9.093967982486872010766136912582, −8.194337405820399031070296237618, −6.62452147114276710026026018049, −5.38277935503279488736111462163, −4.95819517658853437176359325748, −3.50354891093269406934879091707, −2.50021999757731605226964889477, 1.30376443060573154612437232195, 1.76652654304147879259446314531, 3.81089918919006825820527958041, 5.46200513037610835933455887842, 6.21435709617663564336780734056, 7.15477662307272852499177284273, 8.184124432271248470814880680139, 8.617920178415805558734776575068, 9.974158565826380304788758712031, 11.22155940371985926571096418507

Graph of the $Z$-function along the critical line