L(s) = 1 | + 3.16i·3-s + (1.68 + 1.68i)5-s + (2.12 + 2.12i)7-s − 7.03·9-s + (1.43 + 1.43i)11-s + (2.12 − 2.91i)13-s + (−5.34 + 5.34i)15-s − 5.16i·17-s + (4.60 − 4.60i)19-s + (−6.72 + 6.72i)21-s − 4.95·23-s + 0.700i·25-s − 12.7i·27-s + 2.09·29-s + (−0.602 + 0.602i)31-s + ⋯ |
L(s) = 1 | + 1.82i·3-s + (0.755 + 0.755i)5-s + (0.802 + 0.802i)7-s − 2.34·9-s + (0.432 + 0.432i)11-s + (0.588 − 0.808i)13-s + (−1.38 + 1.38i)15-s − 1.25i·17-s + (1.05 − 1.05i)19-s + (−1.46 + 1.46i)21-s − 1.03·23-s + 0.140i·25-s − 2.46i·27-s + 0.388·29-s + (−0.108 + 0.108i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.738153 + 1.48325i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.738153 + 1.48325i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-2.12 + 2.91i)T \) |
good | 3 | \( 1 - 3.16iT - 3T^{2} \) |
| 5 | \( 1 + (-1.68 - 1.68i)T + 5iT^{2} \) |
| 7 | \( 1 + (-2.12 - 2.12i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.43 - 1.43i)T + 11iT^{2} \) |
| 17 | \( 1 + 5.16iT - 17T^{2} \) |
| 19 | \( 1 + (-4.60 + 4.60i)T - 19iT^{2} \) |
| 23 | \( 1 + 4.95T + 23T^{2} \) |
| 29 | \( 1 - 2.09T + 29T^{2} \) |
| 31 | \( 1 + (0.602 - 0.602i)T - 31iT^{2} \) |
| 37 | \( 1 + (4.64 - 4.64i)T - 37iT^{2} \) |
| 41 | \( 1 + (2.79 + 2.79i)T + 41iT^{2} \) |
| 43 | \( 1 + 10.4T + 43T^{2} \) |
| 47 | \( 1 + (-0.746 - 0.746i)T + 47iT^{2} \) |
| 53 | \( 1 - 3.37T + 53T^{2} \) |
| 59 | \( 1 + (3.22 + 3.22i)T + 59iT^{2} \) |
| 61 | \( 1 - 12.4T + 61T^{2} \) |
| 67 | \( 1 + (-5.26 + 5.26i)T - 67iT^{2} \) |
| 71 | \( 1 + (1.16 - 1.16i)T - 71iT^{2} \) |
| 73 | \( 1 + (-7.03 + 7.03i)T - 73iT^{2} \) |
| 79 | \( 1 - 0.171iT - 79T^{2} \) |
| 83 | \( 1 + (7.77 - 7.77i)T - 83iT^{2} \) |
| 89 | \( 1 + (-1.20 + 1.20i)T - 89iT^{2} \) |
| 97 | \( 1 + (-1.95 - 1.95i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39912723099727690122572949215, −10.42828221697934424576073610738, −9.833005139389433361422176233518, −9.093967982486872010766136912582, −8.194337405820399031070296237618, −6.62452147114276710026026018049, −5.38277935503279488736111462163, −4.95819517658853437176359325748, −3.50354891093269406934879091707, −2.50021999757731605226964889477,
1.30376443060573154612437232195, 1.76652654304147879259446314531, 3.81089918919006825820527958041, 5.46200513037610835933455887842, 6.21435709617663564336780734056, 7.15477662307272852499177284273, 8.184124432271248470814880680139, 8.617920178415805558734776575068, 9.974158565826380304788758712031, 11.22155940371985926571096418507