L(s) = 1 | − 2.89i·3-s + (−2.84 − 2.84i)5-s + (−0.193 − 0.193i)7-s − 5.40·9-s + (3.65 + 3.65i)11-s + (−0.193 − 3.60i)13-s + (−8.25 + 8.25i)15-s + 0.899i·17-s + (0.753 − 0.753i)19-s + (−0.560 + 0.560i)21-s − 1.89·23-s + 11.2i·25-s + 6.97i·27-s − 5.41·29-s + (3.24 − 3.24i)31-s + ⋯ |
L(s) = 1 | − 1.67i·3-s + (−1.27 − 1.27i)5-s + (−0.0730 − 0.0730i)7-s − 1.80·9-s + (1.10 + 1.10i)11-s + (−0.0536 − 0.998i)13-s + (−2.13 + 2.13i)15-s + 0.218i·17-s + (0.172 − 0.172i)19-s + (−0.122 + 0.122i)21-s − 0.394·23-s + 2.24i·25-s + 1.34i·27-s − 1.00·29-s + (0.583 − 0.583i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 - 0.238i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.971 - 0.238i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.101645 + 0.841693i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.101645 + 0.841693i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (0.193 + 3.60i)T \) |
good | 3 | \( 1 + 2.89iT - 3T^{2} \) |
| 5 | \( 1 + (2.84 + 2.84i)T + 5iT^{2} \) |
| 7 | \( 1 + (0.193 + 0.193i)T + 7iT^{2} \) |
| 11 | \( 1 + (-3.65 - 3.65i)T + 11iT^{2} \) |
| 17 | \( 1 - 0.899iT - 17T^{2} \) |
| 19 | \( 1 + (-0.753 + 0.753i)T - 19iT^{2} \) |
| 23 | \( 1 + 1.89T + 23T^{2} \) |
| 29 | \( 1 + 5.41T + 29T^{2} \) |
| 31 | \( 1 + (-3.24 + 3.24i)T - 31iT^{2} \) |
| 37 | \( 1 + (-2.95 + 2.95i)T - 37iT^{2} \) |
| 41 | \( 1 + (5.79 + 5.79i)T + 41iT^{2} \) |
| 43 | \( 1 + 2.81T + 43T^{2} \) |
| 47 | \( 1 + (-7.49 - 7.49i)T + 47iT^{2} \) |
| 53 | \( 1 + 5.69T + 53T^{2} \) |
| 59 | \( 1 + (8.44 + 8.44i)T + 59iT^{2} \) |
| 61 | \( 1 + 2.98T + 61T^{2} \) |
| 67 | \( 1 + (-8.85 + 8.85i)T - 67iT^{2} \) |
| 71 | \( 1 + (1.91 - 1.91i)T - 71iT^{2} \) |
| 73 | \( 1 + (-5.40 + 5.40i)T - 73iT^{2} \) |
| 79 | \( 1 + 1.20iT - 79T^{2} \) |
| 83 | \( 1 + (-2.14 + 2.14i)T - 83iT^{2} \) |
| 89 | \( 1 + (1.79 - 1.79i)T - 89iT^{2} \) |
| 97 | \( 1 + (1.10 + 1.10i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18862572772554699572457645746, −9.543394580411627421256449610802, −8.580789252972954256477759193705, −7.77647499530995378190382694960, −7.29707853932406437398705096522, −6.14309207174522921088001003400, −4.86787761203871120217544459505, −3.66705482655324841612240260755, −1.79983040144133385598145312036, −0.56237364290538519503156512407,
3.07994026322223811252007490085, 3.75704504484677243408496555543, 4.49956663509706544613392944053, 6.01930872444795930435241932225, 6.97204857223458824460476486090, 8.239871368134428199830429468701, 9.099274297169274335029615804080, 9.992287753099839875410767762931, 10.90106618460086750326296212694, 11.46037513570913868533151646382