| L(s) = 1 | + (−1.40 − 0.159i)2-s + (−0.700 − 1.69i)3-s + (1.94 + 0.446i)4-s + (−0.175 + 0.423i)5-s + (0.715 + 2.48i)6-s + (−0.506 + 0.506i)7-s + (−2.66 − 0.938i)8-s + (−0.248 + 0.248i)9-s + (0.314 − 0.567i)10-s + (2.80 + 1.16i)11-s + (−0.609 − 3.61i)12-s + (0.593 − 3.55i)13-s + (0.792 − 0.631i)14-s + 0.839·15-s + (3.60 + 1.74i)16-s − 7.47i·17-s + ⋯ |
| L(s) = 1 | + (−0.993 − 0.112i)2-s + (−0.404 − 0.976i)3-s + (0.974 + 0.223i)4-s + (−0.0785 + 0.189i)5-s + (0.292 + 1.01i)6-s + (−0.191 + 0.191i)7-s + (−0.943 − 0.331i)8-s + (−0.0828 + 0.0828i)9-s + (0.0993 − 0.179i)10-s + (0.846 + 0.350i)11-s + (−0.176 − 1.04i)12-s + (0.164 − 0.986i)13-s + (0.211 − 0.168i)14-s + 0.216·15-s + (0.900 + 0.435i)16-s − 1.81i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.507 + 0.861i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.507 + 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.333128 - 0.583014i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.333128 - 0.583014i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.40 + 0.159i)T \) |
| 13 | \( 1 + (-0.593 + 3.55i)T \) |
| good | 3 | \( 1 + (0.700 + 1.69i)T + (-2.12 + 2.12i)T^{2} \) |
| 5 | \( 1 + (0.175 - 0.423i)T + (-3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (0.506 - 0.506i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.80 - 1.16i)T + (7.77 + 7.77i)T^{2} \) |
| 17 | \( 1 + 7.47iT - 17T^{2} \) |
| 19 | \( 1 + (0.221 + 0.534i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (4.70 - 4.70i)T - 23iT^{2} \) |
| 29 | \( 1 + (1.96 + 4.73i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + 1.65iT - 31T^{2} \) |
| 37 | \( 1 + (-3.18 + 7.67i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (5.59 + 5.59i)T + 41iT^{2} \) |
| 43 | \( 1 + (-1.85 + 4.47i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + 10.1T + 47T^{2} \) |
| 53 | \( 1 + (1.65 - 3.98i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-4.82 + 11.6i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (1.04 + 2.52i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + (-12.9 + 5.37i)T + (47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (3.76 - 3.76i)T - 71iT^{2} \) |
| 73 | \( 1 + (-1.03 - 1.03i)T + 73iT^{2} \) |
| 79 | \( 1 - 2.10iT - 79T^{2} \) |
| 83 | \( 1 + (-5.22 - 12.6i)T + (-58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (-6.45 + 6.45i)T - 89iT^{2} \) |
| 97 | \( 1 + 2.02iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08807464611049319227874710279, −9.761861507807961477018982797998, −9.287572387263650618227531207536, −7.927607503482622917481655861557, −7.27607549775093402600731171122, −6.52854337954516492769506036421, −5.52416965282612094602832494059, −3.51597650533044035758303495335, −2.09741189571224280114593523086, −0.64603746695543579940546056549,
1.63777839807669993434384088859, 3.60612185122130928875706942740, 4.63387768119197603846500649468, 6.11817441475412030030817614179, 6.70280822754735648083913213154, 8.209421667012141283991905330338, 8.800856223965595222102736777009, 9.885595707190786687911253890461, 10.37245817815333209496840148704, 11.24040562811393388771916713888