Properties

Label 2-41-1.1-c5-0-3
Degree $2$
Conductor $41$
Sign $1$
Analytic cond. $6.57573$
Root an. cond. $2.56431$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.00·2-s − 26.2·3-s − 27.9·4-s + 74.6·5-s − 52.6·6-s + 126.·7-s − 120.·8-s + 445.·9-s + 149.·10-s + 732.·11-s + 733.·12-s − 948.·13-s + 253.·14-s − 1.95e3·15-s + 653.·16-s + 447.·17-s + 894.·18-s + 506.·19-s − 2.08e3·20-s − 3.31e3·21-s + 1.47e3·22-s + 3.64e3·23-s + 3.16e3·24-s + 2.44e3·25-s − 1.90e3·26-s − 5.31e3·27-s − 3.53e3·28-s + ⋯
L(s)  = 1  + 0.355·2-s − 1.68·3-s − 0.873·4-s + 1.33·5-s − 0.597·6-s + 0.974·7-s − 0.665·8-s + 1.83·9-s + 0.474·10-s + 1.82·11-s + 1.47·12-s − 1.55·13-s + 0.345·14-s − 2.24·15-s + 0.637·16-s + 0.375·17-s + 0.650·18-s + 0.322·19-s − 1.16·20-s − 1.63·21-s + 0.648·22-s + 1.43·23-s + 1.11·24-s + 0.783·25-s − 0.552·26-s − 1.40·27-s − 0.851·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41\)
Sign: $1$
Analytic conductor: \(6.57573\)
Root analytic conductor: \(2.56431\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 41,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.280127727\)
\(L(\frac12)\) \(\approx\) \(1.280127727\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad41 \( 1 - 1.68e3T \)
good2 \( 1 - 2.00T + 32T^{2} \)
3 \( 1 + 26.2T + 243T^{2} \)
5 \( 1 - 74.6T + 3.12e3T^{2} \)
7 \( 1 - 126.T + 1.68e4T^{2} \)
11 \( 1 - 732.T + 1.61e5T^{2} \)
13 \( 1 + 948.T + 3.71e5T^{2} \)
17 \( 1 - 447.T + 1.41e6T^{2} \)
19 \( 1 - 506.T + 2.47e6T^{2} \)
23 \( 1 - 3.64e3T + 6.43e6T^{2} \)
29 \( 1 - 6.03e3T + 2.05e7T^{2} \)
31 \( 1 + 528.T + 2.86e7T^{2} \)
37 \( 1 + 1.02e4T + 6.93e7T^{2} \)
43 \( 1 + 3.66e3T + 1.47e8T^{2} \)
47 \( 1 - 1.67e4T + 2.29e8T^{2} \)
53 \( 1 + 6.95e3T + 4.18e8T^{2} \)
59 \( 1 - 5.21e3T + 7.14e8T^{2} \)
61 \( 1 - 1.83e4T + 8.44e8T^{2} \)
67 \( 1 - 2.17e4T + 1.35e9T^{2} \)
71 \( 1 + 4.52e4T + 1.80e9T^{2} \)
73 \( 1 + 3.13e4T + 2.07e9T^{2} \)
79 \( 1 - 7.16e4T + 3.07e9T^{2} \)
83 \( 1 + 8.23e3T + 3.93e9T^{2} \)
89 \( 1 - 444.T + 5.58e9T^{2} \)
97 \( 1 - 4.53e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.72479580404255849720948113740, −13.95459392019493581997541106150, −12.48532788449071637807309015694, −11.71974566914130275247866313340, −10.22528185595576635726277977091, −9.202656520981390101566071648790, −6.75816000656926975003193276149, −5.46113623922644393671468000560, −4.69737856711548811543386406946, −1.16133380844912504594622500734, 1.16133380844912504594622500734, 4.69737856711548811543386406946, 5.46113623922644393671468000560, 6.75816000656926975003193276149, 9.202656520981390101566071648790, 10.22528185595576635726277977091, 11.71974566914130275247866313340, 12.48532788449071637807309015694, 13.95459392019493581997541106150, 14.72479580404255849720948113740

Graph of the $Z$-function along the critical line