Properties

Label 2-409-409.5-c1-0-23
Degree $2$
Conductor $409$
Sign $-0.330 + 0.943i$
Analytic cond. $3.26588$
Root an. cond. $1.80717$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.00 + 0.619i)2-s + (0.241 + 0.0451i)3-s + (−0.273 + 0.549i)4-s + (−0.624 − 2.19i)5-s + (−0.270 + 0.104i)6-s + 3.32·7-s + (−0.283 − 3.06i)8-s + (−2.74 − 1.06i)9-s + (1.98 + 1.80i)10-s + (−2.74 − 1.06i)11-s + (−0.0909 + 0.120i)12-s + (−5.96 + 2.30i)13-s + (−3.32 + 2.05i)14-s + (−0.0517 − 0.558i)15-s + (1.44 + 1.91i)16-s + (0.297 + 3.21i)17-s + ⋯
L(s)  = 1  + (−0.707 + 0.438i)2-s + (0.139 + 0.0260i)3-s + (−0.136 + 0.274i)4-s + (−0.279 − 0.981i)5-s + (−0.110 + 0.0427i)6-s + 1.25·7-s + (−0.100 − 1.08i)8-s + (−0.913 − 0.353i)9-s + (0.627 + 0.572i)10-s + (−0.827 − 0.320i)11-s + (−0.0262 + 0.0347i)12-s + (−1.65 + 0.640i)13-s + (−0.888 + 0.550i)14-s + (−0.0133 − 0.144i)15-s + (0.360 + 0.477i)16-s + (0.0722 + 0.779i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.330 + 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.330 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(409\)
Sign: $-0.330 + 0.943i$
Analytic conductor: \(3.26588\)
Root analytic conductor: \(1.80717\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{409} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 409,\ (\ :1/2),\ -0.330 + 0.943i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.223242 - 0.314817i\)
\(L(\frac12)\) \(\approx\) \(0.223242 - 0.314817i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad409 \( 1 + (2.47 + 20.0i)T \)
good2 \( 1 + (1.00 - 0.619i)T + (0.891 - 1.79i)T^{2} \)
3 \( 1 + (-0.241 - 0.0451i)T + (2.79 + 1.08i)T^{2} \)
5 \( 1 + (0.624 + 2.19i)T + (-4.25 + 2.63i)T^{2} \)
7 \( 1 - 3.32T + 7T^{2} \)
11 \( 1 + (2.74 + 1.06i)T + (8.12 + 7.41i)T^{2} \)
13 \( 1 + (5.96 - 2.30i)T + (9.60 - 8.75i)T^{2} \)
17 \( 1 + (-0.297 - 3.21i)T + (-16.7 + 3.12i)T^{2} \)
19 \( 1 + (3.13 + 1.93i)T + (8.46 + 17.0i)T^{2} \)
23 \( 1 + (0.715 + 7.71i)T + (-22.6 + 4.22i)T^{2} \)
29 \( 1 + (7.22 + 6.58i)T + (2.67 + 28.8i)T^{2} \)
31 \( 1 - 6.42T + 31T^{2} \)
37 \( 1 + (-2.68 + 3.55i)T + (-10.1 - 35.5i)T^{2} \)
41 \( 1 + (2.32 - 2.12i)T + (3.78 - 40.8i)T^{2} \)
43 \( 1 + (2.43 - 1.50i)T + (19.1 - 38.4i)T^{2} \)
47 \( 1 + (5.01 - 6.64i)T + (-12.8 - 45.2i)T^{2} \)
53 \( 1 - 9.00T + 53T^{2} \)
59 \( 1 + (-3.73 + 7.49i)T + (-35.5 - 47.0i)T^{2} \)
61 \( 1 + (7.46 - 1.39i)T + (56.8 - 22.0i)T^{2} \)
67 \( 1 + (1.73 + 0.673i)T + (49.5 + 45.1i)T^{2} \)
71 \( 1 + (-2.26 + 7.95i)T + (-60.3 - 37.3i)T^{2} \)
73 \( 1 + (2.53 + 5.09i)T + (-43.9 + 58.2i)T^{2} \)
79 \( 1 + (-1.66 - 5.84i)T + (-67.1 + 41.5i)T^{2} \)
83 \( 1 + (-0.168 - 1.81i)T + (-81.5 + 15.2i)T^{2} \)
89 \( 1 + (-6.00 - 12.0i)T + (-53.6 + 71.0i)T^{2} \)
97 \( 1 + (-3.00 - 10.5i)T + (-82.4 + 51.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93316870676904133531281949160, −9.750698199863313264203605113190, −8.824022042197943981898927178286, −8.204576816658631474693085084893, −7.76453087678658078376942873243, −6.37223659087675157362209145941, −4.95227522389253096531699039455, −4.27022491368076898977615551332, −2.42315686624287784349615402522, −0.29247686232028239471896809040, 2.02358942356593737082890005091, 2.95294258232952838326044913330, 4.96892180243867937292309698072, 5.47093898332723629431618495889, 7.33886154792692760472440877743, 7.83991577520632308870738877409, 8.771776746023221999397074826003, 9.975685012649347383789536007428, 10.50676853490753204737695036562, 11.39367671242995065818338322253

Graph of the $Z$-function along the critical line