L(s) = 1 | + (−1.5 + 0.866i)2-s + (−0.633 − 0.366i)3-s + (0.5 − 0.866i)4-s + 1.73·5-s + 1.26·6-s + (−1 + 0.267i)7-s − 1.73i·8-s + (−1.23 − 2.13i)9-s + (−2.59 + 1.49i)10-s + (−3 + 3i)11-s + (−0.633 + 0.366i)12-s + (−0.366 + 0.366i)13-s + (1.26 − 1.26i)14-s + (−1.09 − 0.633i)15-s + (2.49 + 4.33i)16-s + (0.232 + 0.401i)17-s + ⋯ |
L(s) = 1 | + (−1.06 + 0.612i)2-s + (−0.366 − 0.211i)3-s + (0.250 − 0.433i)4-s + 0.774·5-s + 0.517·6-s + (−0.377 + 0.101i)7-s − 0.612i·8-s + (−0.410 − 0.711i)9-s + (−0.821 + 0.474i)10-s + (−0.904 + 0.904i)11-s + (−0.183 + 0.105i)12-s + (−0.101 + 0.101i)13-s + (0.338 − 0.338i)14-s + (−0.283 − 0.163i)15-s + (0.624 + 1.08i)16-s + (0.0562 + 0.0974i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.809 + 0.586i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.809 + 0.586i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 409 | \( 1 + (3 + 20i)T \) |
good | 2 | \( 1 + (1.5 - 0.866i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.633 + 0.366i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 1.73T + 5T^{2} \) |
| 7 | \( 1 + (1 - 0.267i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (3 - 3i)T - 11iT^{2} \) |
| 13 | \( 1 + (0.366 - 0.366i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.232 - 0.401i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.73 - 2.73i)T - 19iT^{2} \) |
| 23 | \( 1 + (1.09 - 0.633i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.90 + 7.09i)T + (-25.1 + 14.5i)T^{2} \) |
| 31 | \( 1 + (5.73 + 5.73i)T + 31iT^{2} \) |
| 37 | \( 1 + (8.09 + 2.16i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (8.19 + 4.73i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 2i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3 - 11.1i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-6.46 + 11.1i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.73 + 7.73i)T - 59iT^{2} \) |
| 61 | \( 1 + (-5.63 - 5.63i)T + 61iT^{2} \) |
| 67 | \( 1 + (12.1 - 3.26i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.43 - 9.09i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-5 + 5i)T - 79iT^{2} \) |
| 83 | \( 1 + 4.73T + 83T^{2} \) |
| 89 | \( 1 - 0.928T + 89T^{2} \) |
| 97 | \( 1 + (-0.794 - 2.96i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42975080398283563038752709603, −9.802416914325194478142978889710, −9.143282685758708723354895120248, −8.088965167745127683422913620832, −7.20098318228978586570759475418, −6.27323663351687743758373230250, −5.54452019232569610415928727519, −3.82887526263359154591352525412, −2.03565977249798668737482206862, 0,
1.93142442332244212890297891194, 3.09059570446152166599001616557, 5.13759453904436590228077958397, 5.66683179681231655092417310126, 7.09324414930802075461270773300, 8.390706831822321560923472979260, 8.889594156298823674529401527882, 10.08411765669315801576183141838, 10.52515209030335247878444626230