L(s) = 1 | + i·3-s + (−0.269 − 2.21i)5-s + 1.32i·7-s − 9-s − 1.57·11-s − 4.68i·13-s + (2.21 − 0.269i)15-s + i·17-s + 0.424·19-s − 1.32·21-s + 5.71i·23-s + (−4.85 + 1.19i)25-s − i·27-s − 6.01·29-s − 3.05·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.120 − 0.992i)5-s + 0.502i·7-s − 0.333·9-s − 0.474·11-s − 1.29i·13-s + (0.573 − 0.0695i)15-s + 0.242i·17-s + 0.0974·19-s − 0.290·21-s + 1.19i·23-s + (−0.970 + 0.239i)25-s − 0.192i·27-s − 1.11·29-s − 0.549·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.120 - 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.120 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.052620360\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.052620360\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (0.269 + 2.21i)T \) |
| 17 | \( 1 - iT \) |
good | 7 | \( 1 - 1.32iT - 7T^{2} \) |
| 11 | \( 1 + 1.57T + 11T^{2} \) |
| 13 | \( 1 + 4.68iT - 13T^{2} \) |
| 19 | \( 1 - 0.424T + 19T^{2} \) |
| 23 | \( 1 - 5.71iT - 23T^{2} \) |
| 29 | \( 1 + 6.01T + 29T^{2} \) |
| 31 | \( 1 + 3.05T + 31T^{2} \) |
| 37 | \( 1 - 1.16iT - 37T^{2} \) |
| 41 | \( 1 - 9.43T + 41T^{2} \) |
| 43 | \( 1 - 4.16iT - 43T^{2} \) |
| 47 | \( 1 - 0.0211iT - 47T^{2} \) |
| 53 | \( 1 - 8.97iT - 53T^{2} \) |
| 59 | \( 1 - 3.92T + 59T^{2} \) |
| 61 | \( 1 + 14.6T + 61T^{2} \) |
| 67 | \( 1 - 7.27iT - 67T^{2} \) |
| 71 | \( 1 - 12.0T + 71T^{2} \) |
| 73 | \( 1 - 3.84iT - 73T^{2} \) |
| 79 | \( 1 - 5.36T + 79T^{2} \) |
| 83 | \( 1 + 1.31iT - 83T^{2} \) |
| 89 | \( 1 - 18.1T + 89T^{2} \) |
| 97 | \( 1 - 3.08iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.764168324287193209440098836183, −7.78939816656853882736543474817, −7.60780563842858802934532849550, −6.05054569163223254816236584093, −5.54591366262848343371200994723, −5.03726911858401859411577290655, −4.07610472526533506570087944049, −3.31264221646251593316358030224, −2.30221484319210245366523201323, −1.03158450326910915592044430696,
0.33254906311288942855496733400, 1.86731310317993285052102498554, 2.54223744854755787544448537465, 3.59335577004731217604821135281, 4.30261666501395466336074294730, 5.35303767315352757433012990608, 6.29901005985639456344300428214, 6.79653646971864406339539421254, 7.45936672121267622131765571321, 7.954176917233122014562558028850