Properties

Label 2-4080-5.4-c1-0-70
Degree $2$
Conductor $4080$
Sign $-0.447 + 0.894i$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (−1 + 2i)5-s + i·7-s − 9-s + 11-s − 4i·13-s + (2 + i)15-s i·17-s − 19-s + 21-s + 4i·23-s + (−3 − 4i)25-s + i·27-s + 29-s − 6·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (−0.447 + 0.894i)5-s + 0.377i·7-s − 0.333·9-s + 0.301·11-s − 1.10i·13-s + (0.516 + 0.258i)15-s − 0.242i·17-s − 0.229·19-s + 0.218·21-s + 0.834i·23-s + (−0.600 − 0.800i)25-s + 0.192i·27-s + 0.185·29-s − 1.07·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4080} (2449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8348912501\)
\(L(\frac12)\) \(\approx\) \(0.8348912501\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (1 - 2i)T \)
17 \( 1 + iT \)
good7 \( 1 - iT - 7T^{2} \)
11 \( 1 - T + 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
19 \( 1 + T + 19T^{2} \)
23 \( 1 - 4iT - 23T^{2} \)
29 \( 1 - T + 29T^{2} \)
31 \( 1 + 6T + 31T^{2} \)
37 \( 1 + 5iT - 37T^{2} \)
41 \( 1 + T + 41T^{2} \)
43 \( 1 - 6iT - 43T^{2} \)
47 \( 1 + 3iT - 47T^{2} \)
53 \( 1 - iT - 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 4T + 61T^{2} \)
67 \( 1 + 2iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 5iT - 73T^{2} \)
79 \( 1 + 14T + 79T^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.041889703031213509532581770375, −7.40839818489721870406146526039, −6.90788006775617250412163675601, −5.94035277803158704732672436615, −5.50225489991146238744736326909, −4.28394964200806525511251916053, −3.34921533049855993304681134303, −2.73549029315873466119514107941, −1.68868724762115940085648116846, −0.25730828131478725156877622124, 1.12051980684321038727843655736, 2.24216654335027260203167518383, 3.57565253022825216396980564362, 4.16590019197400274598073153437, 4.73702620550763400793832826214, 5.56867605177513961199848770194, 6.49148928084948667833830848596, 7.22615727048779151424952284749, 8.074141981506668986753095870787, 8.878947011534959073843108946710

Graph of the $Z$-function along the critical line