L(s) = 1 | − i·3-s − i·5-s − i·7-s − 9-s + 5i·11-s − 2·13-s − 15-s + (1 + 4i)17-s − 19-s − 21-s − 25-s + i·27-s − 7i·29-s + 5·33-s − 35-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.447i·5-s − 0.377i·7-s − 0.333·9-s + 1.50i·11-s − 0.554·13-s − 0.258·15-s + (0.242 + 0.970i)17-s − 0.229·19-s − 0.218·21-s − 0.200·25-s + 0.192i·27-s − 1.29i·29-s + 0.870·33-s − 0.169·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.594885255\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.594885255\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + iT \) |
| 17 | \( 1 + (-1 - 4i)T \) |
good | 7 | \( 1 + iT - 7T^{2} \) |
| 11 | \( 1 - 5iT - 11T^{2} \) |
| 13 | \( 1 + 2T + 13T^{2} \) |
| 19 | \( 1 + T + 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + 7iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + 5iT - 37T^{2} \) |
| 41 | \( 1 + 9iT - 41T^{2} \) |
| 43 | \( 1 - 12T + 43T^{2} \) |
| 47 | \( 1 + T + 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 - 8T + 59T^{2} \) |
| 61 | \( 1 + 8iT - 61T^{2} \) |
| 67 | \( 1 - 2T + 67T^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 + 11iT - 73T^{2} \) |
| 79 | \( 1 + 10iT - 79T^{2} \) |
| 83 | \( 1 + 8T + 83T^{2} \) |
| 89 | \( 1 - 16T + 89T^{2} \) |
| 97 | \( 1 - 10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.123211971188026849455338291255, −7.47790825982868040208228288298, −7.02404288335124198733104987461, −6.06823521703467764431697250537, −5.36311432697206404917736402633, −4.38466077427138350371865489792, −3.88210362884565462898388751716, −2.41553158333585497620382978142, −1.84309156241406501852649650331, −0.56831208883210274896897443058,
0.911748960445109706226060729316, 2.53811271022661788320714090633, 3.06365004603294013069594368517, 3.92799505878477115689008770822, 4.94079703149127181163409864643, 5.57362264512281649208051253560, 6.28502812885181009240371287217, 7.12298792220899568091724321198, 7.919499707693284992677893705757, 8.726826360762679320933376006324