Properties

Label 2-4080-1.1-c1-0-7
Degree $2$
Conductor $4080$
Sign $1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 1.11·7-s + 9-s − 2.38·11-s + 6.87·13-s + 15-s − 17-s − 2.88·19-s + 1.11·21-s + 6.65·23-s + 25-s − 27-s + 0.887·29-s − 3.49·31-s + 2.38·33-s + 1.11·35-s − 7.99·37-s − 6.87·39-s + 3.88·41-s − 10.1·43-s − 45-s + 2.38·47-s − 5.76·49-s + 51-s − 3.88·53-s + 2.38·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.420·7-s + 0.333·9-s − 0.719·11-s + 1.90·13-s + 0.258·15-s − 0.242·17-s − 0.662·19-s + 0.242·21-s + 1.38·23-s + 0.200·25-s − 0.192·27-s + 0.164·29-s − 0.628·31-s + 0.415·33-s + 0.188·35-s − 1.31·37-s − 1.10·39-s + 0.606·41-s − 1.54·43-s − 0.149·45-s + 0.347·47-s − 0.823·49-s + 0.140·51-s − 0.533·53-s + 0.321·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.164970169\)
\(L(\frac12)\) \(\approx\) \(1.164970169\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + 1.11T + 7T^{2} \)
11 \( 1 + 2.38T + 11T^{2} \)
13 \( 1 - 6.87T + 13T^{2} \)
19 \( 1 + 2.88T + 19T^{2} \)
23 \( 1 - 6.65T + 23T^{2} \)
29 \( 1 - 0.887T + 29T^{2} \)
31 \( 1 + 3.49T + 31T^{2} \)
37 \( 1 + 7.99T + 37T^{2} \)
41 \( 1 - 3.88T + 41T^{2} \)
43 \( 1 + 10.1T + 43T^{2} \)
47 \( 1 - 2.38T + 47T^{2} \)
53 \( 1 + 3.88T + 53T^{2} \)
59 \( 1 + 4.87T + 59T^{2} \)
61 \( 1 - 6.87T + 61T^{2} \)
67 \( 1 - 11.0T + 67T^{2} \)
71 \( 1 - 14.1T + 71T^{2} \)
73 \( 1 + 9.76T + 73T^{2} \)
79 \( 1 + 5.37T + 79T^{2} \)
83 \( 1 - 14.1T + 83T^{2} \)
89 \( 1 - 6.10T + 89T^{2} \)
97 \( 1 + 0.996T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.516182410394374835502521640382, −7.69780954273315604583288516469, −6.76412303678911485470506906137, −6.36227379131241779223458577338, −5.44226216104367280333592720136, −4.76822506897459477793235043766, −3.74332628324518837916037276738, −3.18529990402260219391791132560, −1.82613866496911496097561004443, −0.63739557382352730113872370830, 0.63739557382352730113872370830, 1.82613866496911496097561004443, 3.18529990402260219391791132560, 3.74332628324518837916037276738, 4.76822506897459477793235043766, 5.44226216104367280333592720136, 6.36227379131241779223458577338, 6.76412303678911485470506906137, 7.69780954273315604583288516469, 8.516182410394374835502521640382

Graph of the $Z$-function along the critical line