L(s) = 1 | + (0.382 − 0.923i)3-s + (−3.44 − 1.42i)5-s + (−2.17 + 0.902i)7-s + (−0.707 − 0.707i)9-s + (0.746 + 1.80i)11-s + 5.01i·13-s + (−2.63 + 2.63i)15-s + (−1.56 + 3.81i)17-s + (−2.80 + 2.80i)19-s + 2.35i·21-s + (−3.53 − 8.53i)23-s + (6.28 + 6.28i)25-s + (−0.923 + 0.382i)27-s + (−6.78 − 2.80i)29-s + (1.47 − 3.56i)31-s + ⋯ |
L(s) = 1 | + (0.220 − 0.533i)3-s + (−1.53 − 0.637i)5-s + (−0.823 + 0.340i)7-s + (−0.235 − 0.235i)9-s + (0.225 + 0.543i)11-s + 1.38i·13-s + (−0.680 + 0.680i)15-s + (−0.378 + 0.925i)17-s + (−0.642 + 0.642i)19-s + 0.514i·21-s + (−0.737 − 1.78i)23-s + (1.25 + 1.25i)25-s + (−0.177 + 0.0736i)27-s + (−1.25 − 0.521i)29-s + (0.265 − 0.640i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.761 - 0.648i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.761 - 0.648i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0411368 + 0.111798i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0411368 + 0.111798i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.382 + 0.923i)T \) |
| 17 | \( 1 + (1.56 - 3.81i)T \) |
good | 5 | \( 1 + (3.44 + 1.42i)T + (3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (2.17 - 0.902i)T + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.746 - 1.80i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 5.01iT - 13T^{2} \) |
| 19 | \( 1 + (2.80 - 2.80i)T - 19iT^{2} \) |
| 23 | \( 1 + (3.53 + 8.53i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (6.78 + 2.80i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-1.47 + 3.56i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (0.624 - 1.50i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-6.00 + 2.48i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (7.41 + 7.41i)T + 43iT^{2} \) |
| 47 | \( 1 + 6.29iT - 47T^{2} \) |
| 53 | \( 1 + (7.50 - 7.50i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.05 + 3.05i)T + 59iT^{2} \) |
| 61 | \( 1 + (8.06 - 3.33i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 6.10T + 67T^{2} \) |
| 71 | \( 1 + (0.839 - 2.02i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-4.15 - 1.72i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (-4.55 - 11.0i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (5.67 - 5.67i)T - 83iT^{2} \) |
| 89 | \( 1 - 6.70iT - 89T^{2} \) |
| 97 | \( 1 + (1.06 + 0.442i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.90317602919333776670001638118, −10.87803701558303220135730613432, −9.561955693862775148111639569472, −8.670931838406107630171783598914, −8.032282972863673133887179930041, −6.94776693085099530619367682341, −6.16243286353919784834727785867, −4.39016842721206656373549807302, −3.82571505100692628888450143327, −2.06473547565380975677943236733,
0.07199047777914608200748366516, 3.16057847315065006574821202235, 3.51461299655205110753120962415, 4.81040224684590976622471426355, 6.21849468920138382317875046877, 7.37225600567332063036152263180, 7.958147426481422662652247216984, 9.111779227003179703273116153046, 10.04837431229752221225479632701, 11.07776341272652025163474819733