L(s) = 1 | − 2-s + 4-s + 4.44·7-s − 8-s + 1.44·11-s − 2.44·13-s − 4.44·14-s + 16-s + 3.89·17-s − 0.550·19-s − 1.44·22-s − 2.89·23-s + 2.44·26-s + 4.44·28-s − 6·29-s + 6.44·31-s − 32-s − 3.89·34-s + 8·37-s + 0.550·38-s − 41-s + 7.44·43-s + 1.44·44-s + 2.89·46-s + 0.449·47-s + 12.7·49-s − 2.44·52-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 1.68·7-s − 0.353·8-s + 0.437·11-s − 0.679·13-s − 1.18·14-s + 0.250·16-s + 0.945·17-s − 0.126·19-s − 0.309·22-s − 0.604·23-s + 0.480·26-s + 0.840·28-s − 1.11·29-s + 1.15·31-s − 0.176·32-s − 0.668·34-s + 1.31·37-s + 0.0893·38-s − 0.156·41-s + 1.13·43-s + 0.218·44-s + 0.427·46-s + 0.0655·47-s + 1.82·49-s − 0.339·52-s + ⋯ |
Λ(s)=(=(4050s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4050s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.780093107 |
L(21) |
≈ |
1.780093107 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−4.44T+7T2 |
| 11 | 1−1.44T+11T2 |
| 13 | 1+2.44T+13T2 |
| 17 | 1−3.89T+17T2 |
| 19 | 1+0.550T+19T2 |
| 23 | 1+2.89T+23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1−6.44T+31T2 |
| 37 | 1−8T+37T2 |
| 41 | 1+T+41T2 |
| 43 | 1−7.44T+43T2 |
| 47 | 1−0.449T+47T2 |
| 53 | 1−8.44T+53T2 |
| 59 | 1+11.2T+59T2 |
| 61 | 1+0.449T+61T2 |
| 67 | 1−9.44T+67T2 |
| 71 | 1−2.44T+71T2 |
| 73 | 1+4.79T+73T2 |
| 79 | 1+7.34T+79T2 |
| 83 | 1+4T+83T2 |
| 89 | 1−12.8T+89T2 |
| 97 | 1−13T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.339563986932870424202180468562, −7.72382008668861307350916612986, −7.38215223168032834681833095580, −6.24779322808817161528656473236, −5.51590793892054510298416854158, −4.69231405209101975306355702254, −3.92371181927958158556053464890, −2.64139178383898371260436569300, −1.80484528932071689015137879459, −0.896780737417836870195025678475,
0.896780737417836870195025678475, 1.80484528932071689015137879459, 2.64139178383898371260436569300, 3.92371181927958158556053464890, 4.69231405209101975306355702254, 5.51590793892054510298416854158, 6.24779322808817161528656473236, 7.38215223168032834681833095580, 7.72382008668861307350916612986, 8.339563986932870424202180468562