L(s) = 1 | + (−1.78 + 3.09i)2-s + (−4.38 − 7.59i)4-s + (4.95 + 0.682i)5-s + (−5.21 − 3.01i)7-s + 17.0·8-s + (−10.9 + 14.1i)10-s + (−13.1 − 7.60i)11-s + (−9.54 + 5.51i)13-s + (18.6 − 10.7i)14-s + (−12.9 + 22.4i)16-s + 26.8·17-s + 15.8·19-s + (−16.5 − 40.6i)20-s + (47.0 − 27.1i)22-s + (5.76 + 9.98i)23-s + ⋯ |
L(s) = 1 | + (−0.893 + 1.54i)2-s + (−1.09 − 1.89i)4-s + (0.990 + 0.136i)5-s + (−0.745 − 0.430i)7-s + 2.13·8-s + (−1.09 + 1.41i)10-s + (−1.19 − 0.690i)11-s + (−0.734 + 0.424i)13-s + (1.33 − 0.768i)14-s + (−0.809 + 1.40i)16-s + 1.57·17-s + 0.836·19-s + (−0.827 − 2.03i)20-s + (2.13 − 1.23i)22-s + (0.250 + 0.434i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0495 - 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0495 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.730785 + 0.695405i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.730785 + 0.695405i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-4.95 - 0.682i)T \) |
good | 2 | \( 1 + (1.78 - 3.09i)T + (-2 - 3.46i)T^{2} \) |
| 7 | \( 1 + (5.21 + 3.01i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (13.1 + 7.60i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (9.54 - 5.51i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 - 26.8T + 289T^{2} \) |
| 19 | \( 1 - 15.8T + 361T^{2} \) |
| 23 | \( 1 + (-5.76 - 9.98i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-47.1 - 27.2i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-15.7 - 27.3i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 38.1iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-32.6 + 18.8i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-3.93 - 2.26i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-1.85 + 3.21i)T + (-1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 56.1T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-43.3 + 25.0i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-24.2 + 41.9i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (60.0 - 34.6i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 38.5iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 27.2iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-39.4 + 68.3i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (75.3 - 130. i)T + (-3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + 3.50iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-23.9 - 13.8i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57495441778548828114829827951, −10.05206028066748922845699697942, −9.399141278092270708152197351259, −8.399617644080004493524984378938, −7.40958160457681999009056876239, −6.75567860771863725339360972680, −5.65658645245941415652445273439, −5.16124969873738208764370480105, −3.00641942616971661659482499774, −0.881821962372327851909456854186,
0.890593716594954638644419362318, 2.49740614439230574407527000025, 2.95223039759283060120601102681, 4.75463804807524833235626543211, 5.89669841833026864132425373789, 7.50064063236327004304522828961, 8.371704575389568580159768461965, 9.546644321010820413217917933528, 10.01744485270557656033970659152, 10.33411072286918974062801411758