Properties

Label 2-405-45.29-c2-0-24
Degree $2$
Conductor $405$
Sign $0.990 + 0.140i$
Analytic cond. $11.0354$
Root an. cond. $3.32196$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.577 − 1.00i)2-s + (1.33 + 2.30i)4-s + (4.87 + 1.12i)5-s + (−6.09 − 3.51i)7-s + 7.70·8-s + (3.94 − 4.22i)10-s + (4.54 + 2.62i)11-s + (15.8 − 9.17i)13-s + (−7.04 + 4.06i)14-s + (−0.878 + 1.52i)16-s − 24.8·17-s + 25.3·19-s + (3.88 + 12.7i)20-s + (5.25 − 3.03i)22-s + (5.44 + 9.42i)23-s + ⋯
L(s)  = 1  + (0.288 − 0.500i)2-s + (0.333 + 0.576i)4-s + (0.974 + 0.225i)5-s + (−0.870 − 0.502i)7-s + 0.962·8-s + (0.394 − 0.422i)10-s + (0.413 + 0.238i)11-s + (1.22 − 0.706i)13-s + (−0.503 + 0.290i)14-s + (−0.0549 + 0.0951i)16-s − 1.46·17-s + 1.33·19-s + (0.194 + 0.637i)20-s + (0.238 − 0.137i)22-s + (0.236 + 0.409i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $0.990 + 0.140i$
Analytic conductor: \(11.0354\)
Root analytic conductor: \(3.32196\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (269, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1),\ 0.990 + 0.140i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.60581 - 0.183514i\)
\(L(\frac12)\) \(\approx\) \(2.60581 - 0.183514i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-4.87 - 1.12i)T \)
good2 \( 1 + (-0.577 + 1.00i)T + (-2 - 3.46i)T^{2} \)
7 \( 1 + (6.09 + 3.51i)T + (24.5 + 42.4i)T^{2} \)
11 \( 1 + (-4.54 - 2.62i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 + (-15.8 + 9.17i)T + (84.5 - 146. i)T^{2} \)
17 \( 1 + 24.8T + 289T^{2} \)
19 \( 1 - 25.3T + 361T^{2} \)
23 \( 1 + (-5.44 - 9.42i)T + (-264.5 + 458. i)T^{2} \)
29 \( 1 + (-24.0 - 13.8i)T + (420.5 + 728. i)T^{2} \)
31 \( 1 + (-20.5 - 35.6i)T + (-480.5 + 832. i)T^{2} \)
37 \( 1 + 28.5iT - 1.36e3T^{2} \)
41 \( 1 + (37.0 - 21.3i)T + (840.5 - 1.45e3i)T^{2} \)
43 \( 1 + (41.0 + 23.7i)T + (924.5 + 1.60e3i)T^{2} \)
47 \( 1 + (-15.1 + 26.2i)T + (-1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + 1.12T + 2.80e3T^{2} \)
59 \( 1 + (44.2 - 25.5i)T + (1.74e3 - 3.01e3i)T^{2} \)
61 \( 1 + (-39.1 + 67.8i)T + (-1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (-18.3 + 10.6i)T + (2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + 14.4iT - 5.04e3T^{2} \)
73 \( 1 + 112. iT - 5.32e3T^{2} \)
79 \( 1 + (-8.96 + 15.5i)T + (-3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + (58.3 - 101. i)T + (-3.44e3 - 5.96e3i)T^{2} \)
89 \( 1 - 18.0iT - 7.92e3T^{2} \)
97 \( 1 + (0.442 + 0.255i)T + (4.70e3 + 8.14e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.91967552478430428085346031802, −10.34767036306513327495464444311, −9.352133211462441312104423155250, −8.350874771492267615591258628769, −6.95013645345213377462304995818, −6.51457737304398613154479935682, −5.10649726636644186347152935689, −3.67323091936556964655459889797, −2.90921727215494040354566159371, −1.43730104817717325966356391711, 1.30298606366507720429777197736, 2.67292254665746090133221931876, 4.36530694913680319809259803594, 5.54513896963206518165735880993, 6.40234377860052131928346790515, 6.71283403207447476797764310451, 8.437803309326310044506648505844, 9.334071713310223477161513230772, 9.984012347468083196911420415356, 11.06548480974639868787153181860

Graph of the $Z$-function along the critical line