L(s) = 1 | + (0.577 − 1.00i)2-s + (1.33 + 2.30i)4-s + (4.87 + 1.12i)5-s + (−6.09 − 3.51i)7-s + 7.70·8-s + (3.94 − 4.22i)10-s + (4.54 + 2.62i)11-s + (15.8 − 9.17i)13-s + (−7.04 + 4.06i)14-s + (−0.878 + 1.52i)16-s − 24.8·17-s + 25.3·19-s + (3.88 + 12.7i)20-s + (5.25 − 3.03i)22-s + (5.44 + 9.42i)23-s + ⋯ |
L(s) = 1 | + (0.288 − 0.500i)2-s + (0.333 + 0.576i)4-s + (0.974 + 0.225i)5-s + (−0.870 − 0.502i)7-s + 0.962·8-s + (0.394 − 0.422i)10-s + (0.413 + 0.238i)11-s + (1.22 − 0.706i)13-s + (−0.503 + 0.290i)14-s + (−0.0549 + 0.0951i)16-s − 1.46·17-s + 1.33·19-s + (0.194 + 0.637i)20-s + (0.238 − 0.137i)22-s + (0.236 + 0.409i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.990 + 0.140i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.60581 - 0.183514i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.60581 - 0.183514i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-4.87 - 1.12i)T \) |
good | 2 | \( 1 + (-0.577 + 1.00i)T + (-2 - 3.46i)T^{2} \) |
| 7 | \( 1 + (6.09 + 3.51i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (-4.54 - 2.62i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-15.8 + 9.17i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 24.8T + 289T^{2} \) |
| 19 | \( 1 - 25.3T + 361T^{2} \) |
| 23 | \( 1 + (-5.44 - 9.42i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-24.0 - 13.8i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-20.5 - 35.6i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + 28.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (37.0 - 21.3i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (41.0 + 23.7i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-15.1 + 26.2i)T + (-1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + 1.12T + 2.80e3T^{2} \) |
| 59 | \( 1 + (44.2 - 25.5i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-39.1 + 67.8i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-18.3 + 10.6i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 14.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 112. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-8.96 + 15.5i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (58.3 - 101. i)T + (-3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 18.0iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (0.442 + 0.255i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91967552478430428085346031802, −10.34767036306513327495464444311, −9.352133211462441312104423155250, −8.350874771492267615591258628769, −6.95013645345213377462304995818, −6.51457737304398613154479935682, −5.10649726636644186347152935689, −3.67323091936556964655459889797, −2.90921727215494040354566159371, −1.43730104817717325966356391711,
1.30298606366507720429777197736, 2.67292254665746090133221931876, 4.36530694913680319809259803594, 5.54513896963206518165735880993, 6.40234377860052131928346790515, 6.71283403207447476797764310451, 8.437803309326310044506648505844, 9.334071713310223477161513230772, 9.984012347468083196911420415356, 11.06548480974639868787153181860