L(s) = 1 | + (0.577 − 1.00i)2-s + (1.33 + 2.30i)4-s + (−1.45 + 4.78i)5-s + (6.09 + 3.51i)7-s + 7.70·8-s + (3.94 + 4.22i)10-s + (−4.54 − 2.62i)11-s + (−15.8 + 9.17i)13-s + (7.04 − 4.06i)14-s + (−0.878 + 1.52i)16-s − 24.8·17-s + 25.3·19-s + (−12.9 + 3.00i)20-s + (−5.25 + 3.03i)22-s + (5.44 + 9.42i)23-s + ⋯ |
L(s) = 1 | + (0.288 − 0.500i)2-s + (0.333 + 0.576i)4-s + (−0.291 + 0.956i)5-s + (0.870 + 0.502i)7-s + 0.962·8-s + (0.394 + 0.422i)10-s + (−0.413 − 0.238i)11-s + (−1.22 + 0.706i)13-s + (0.503 − 0.290i)14-s + (−0.0549 + 0.0951i)16-s − 1.46·17-s + 1.33·19-s + (−0.648 + 0.150i)20-s + (−0.238 + 0.137i)22-s + (0.236 + 0.409i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.206 - 0.978i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.206 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.53107 + 1.24109i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.53107 + 1.24109i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.45 - 4.78i)T \) |
good | 2 | \( 1 + (-0.577 + 1.00i)T + (-2 - 3.46i)T^{2} \) |
| 7 | \( 1 + (-6.09 - 3.51i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (4.54 + 2.62i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (15.8 - 9.17i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 24.8T + 289T^{2} \) |
| 19 | \( 1 - 25.3T + 361T^{2} \) |
| 23 | \( 1 + (-5.44 - 9.42i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (24.0 + 13.8i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-20.5 - 35.6i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 - 28.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-37.0 + 21.3i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-41.0 - 23.7i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-15.1 + 26.2i)T + (-1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + 1.12T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-44.2 + 25.5i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-39.1 + 67.8i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (18.3 - 10.6i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 14.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 112. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-8.96 + 15.5i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (58.3 - 101. i)T + (-3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + 18.0iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-0.442 - 0.255i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52306972321878635229848983758, −10.67633067223763465909441667871, −9.558005771468778308828267824970, −8.320452384277149830138347375886, −7.44781811127792892129883095706, −6.78703818252765281921517312126, −5.21487374950925795767709143316, −4.17734324789410483280858457845, −2.87873271984906059957828936517, −2.08416867484278537801023671637,
0.76565469111567308205233356669, 2.25267014080821770524052068968, 4.38025183905710741802022046963, 4.95286378574552695113006358283, 5.83941362194170908782826389869, 7.46790330913851025126510590267, 7.57583375125846729740122475250, 8.986745376071180850952989729452, 9.955632642742557672768912057191, 10.92219420819756857021410573060