L(s) = 1 | + (1.74 + 3.01i)2-s + (−4.06 + 7.04i)4-s + (1.26 − 4.83i)5-s + (11.0 − 6.38i)7-s − 14.4·8-s + (16.7 − 4.62i)10-s + (12.2 − 7.09i)11-s + (−3.89 − 2.25i)13-s + (38.5 + 22.2i)14-s + (−8.83 − 15.3i)16-s + 9.20·17-s − 15.8·19-s + (28.9 + 28.5i)20-s + (42.8 + 24.7i)22-s + (−2.12 + 3.67i)23-s + ⋯ |
L(s) = 1 | + (0.870 + 1.50i)2-s + (−1.01 + 1.76i)4-s + (0.252 − 0.967i)5-s + (1.58 − 0.912i)7-s − 1.80·8-s + (1.67 − 0.462i)10-s + (1.11 − 0.644i)11-s + (−0.299 − 0.173i)13-s + (2.75 + 1.58i)14-s + (−0.552 − 0.956i)16-s + 0.541·17-s − 0.833·19-s + (1.44 + 1.42i)20-s + (1.94 + 1.12i)22-s + (−0.0922 + 0.159i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.335 - 0.941i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.335 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.59581 + 1.83059i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.59581 + 1.83059i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.26 + 4.83i)T \) |
good | 2 | \( 1 + (-1.74 - 3.01i)T + (-2 + 3.46i)T^{2} \) |
| 7 | \( 1 + (-11.0 + 6.38i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-12.2 + 7.09i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (3.89 + 2.25i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 9.20T + 289T^{2} \) |
| 19 | \( 1 + 15.8T + 361T^{2} \) |
| 23 | \( 1 + (2.12 - 3.67i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-22.9 + 13.2i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (15.7 - 27.2i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 - 14.6iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (38.6 + 22.3i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (56.6 - 32.6i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-28.2 - 48.9i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 - 17.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-41.8 - 24.1i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-45.7 - 79.2i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (43.8 + 25.3i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 67.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 52.6iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-27.4 - 47.5i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-1.27 - 2.21i)T + (-3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 82.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (55.3 - 31.9i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53666408649237898035804714275, −10.26341974410116689787481589457, −8.764667058087079290880761967550, −8.296612443648218058666091187921, −7.42712361175408462982772666042, −6.39738588009273182007524463699, −5.34275109555647352320798126142, −4.61933978250060877725183857966, −3.85093774035715785311244507393, −1.30515825201728770859667895621,
1.69690230528846343650575073262, 2.32468938618769986647293446777, 3.71101363508124421747635947069, 4.73493110859825222692118554926, 5.63871459392276791501984150034, 6.89598554369215168144252226656, 8.330175692882797429982070160001, 9.438993709091459218626755194647, 10.31190951556723256295464339536, 11.10750235536144448620308242262