L(s) = 1 | + (0.0484 + 0.0840i)2-s + (1.99 − 3.45i)4-s + (−4.38 + 2.39i)5-s + (8.81 − 5.09i)7-s + 0.775·8-s + (−0.413 − 0.252i)10-s + (1.54 − 0.894i)11-s + (11.8 + 6.86i)13-s + (0.855 + 0.493i)14-s + (−7.94 − 13.7i)16-s − 13.0·17-s − 16.5·19-s + (−0.485 + 19.9i)20-s + (0.150 + 0.0867i)22-s + (20.8 − 36.0i)23-s + ⋯ |
L(s) = 1 | + (0.0242 + 0.0420i)2-s + (0.498 − 0.863i)4-s + (−0.877 + 0.478i)5-s + (1.25 − 0.727i)7-s + 0.0968·8-s + (−0.0413 − 0.0252i)10-s + (0.140 − 0.0812i)11-s + (0.915 + 0.528i)13-s + (0.0610 + 0.0352i)14-s + (−0.496 − 0.859i)16-s − 0.769·17-s − 0.872·19-s + (−0.0242 + 0.997i)20-s + (0.00682 + 0.00394i)22-s + (0.905 − 1.56i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.54602 - 1.01159i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.54602 - 1.01159i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (4.38 - 2.39i)T \) |
good | 2 | \( 1 + (-0.0484 - 0.0840i)T + (-2 + 3.46i)T^{2} \) |
| 7 | \( 1 + (-8.81 + 5.09i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-1.54 + 0.894i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-11.8 - 6.86i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + 13.0T + 289T^{2} \) |
| 19 | \( 1 + 16.5T + 361T^{2} \) |
| 23 | \( 1 + (-20.8 + 36.0i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-38.2 + 22.0i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (3.23 - 5.59i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 20.6iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (49.3 + 28.4i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-29.7 + 17.1i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-30.0 - 52.0i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 25.5T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-35.1 - 20.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (34.6 + 59.9i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-52.0 - 30.0i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 91.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 74.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-30.8 - 53.3i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-29.2 - 50.6i)T + (-3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 - 66.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (136. - 79.0i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89647158417206206223224763087, −10.45841473630377911912107521537, −8.866785221248999392426469420922, −8.092162315504718310344855821847, −6.94486290402891506953534972156, −6.38980401963176581096817941820, −4.80999615488852532388661018649, −4.09807437704684966532954437249, −2.33188642216369955852032703329, −0.867785097758558144454976910811,
1.57614968251243638879224363507, 3.09567705610932950233261800942, 4.25159360684693906433381292282, 5.23315486413251505761562837067, 6.65645327415463079958151802439, 7.71920337479335618998887142255, 8.457141828114716235334531554876, 8.878958949546943210986567449687, 10.72144397826092121164159511750, 11.40386187978665889165736318016