Properties

Label 2-405-45.14-c2-0-33
Degree $2$
Conductor $405$
Sign $0.400 + 0.916i$
Analytic cond. $11.0354$
Root an. cond. $3.32196$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0484 + 0.0840i)2-s + (1.99 − 3.45i)4-s + (−4.38 + 2.39i)5-s + (8.81 − 5.09i)7-s + 0.775·8-s + (−0.413 − 0.252i)10-s + (1.54 − 0.894i)11-s + (11.8 + 6.86i)13-s + (0.855 + 0.493i)14-s + (−7.94 − 13.7i)16-s − 13.0·17-s − 16.5·19-s + (−0.485 + 19.9i)20-s + (0.150 + 0.0867i)22-s + (20.8 − 36.0i)23-s + ⋯
L(s)  = 1  + (0.0242 + 0.0420i)2-s + (0.498 − 0.863i)4-s + (−0.877 + 0.478i)5-s + (1.25 − 0.727i)7-s + 0.0968·8-s + (−0.0413 − 0.0252i)10-s + (0.140 − 0.0812i)11-s + (0.915 + 0.528i)13-s + (0.0610 + 0.0352i)14-s + (−0.496 − 0.859i)16-s − 0.769·17-s − 0.872·19-s + (−0.0242 + 0.997i)20-s + (0.00682 + 0.00394i)22-s + (0.905 − 1.56i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $0.400 + 0.916i$
Analytic conductor: \(11.0354\)
Root analytic conductor: \(3.32196\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (134, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1),\ 0.400 + 0.916i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.54602 - 1.01159i\)
\(L(\frac12)\) \(\approx\) \(1.54602 - 1.01159i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (4.38 - 2.39i)T \)
good2 \( 1 + (-0.0484 - 0.0840i)T + (-2 + 3.46i)T^{2} \)
7 \( 1 + (-8.81 + 5.09i)T + (24.5 - 42.4i)T^{2} \)
11 \( 1 + (-1.54 + 0.894i)T + (60.5 - 104. i)T^{2} \)
13 \( 1 + (-11.8 - 6.86i)T + (84.5 + 146. i)T^{2} \)
17 \( 1 + 13.0T + 289T^{2} \)
19 \( 1 + 16.5T + 361T^{2} \)
23 \( 1 + (-20.8 + 36.0i)T + (-264.5 - 458. i)T^{2} \)
29 \( 1 + (-38.2 + 22.0i)T + (420.5 - 728. i)T^{2} \)
31 \( 1 + (3.23 - 5.59i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + 20.6iT - 1.36e3T^{2} \)
41 \( 1 + (49.3 + 28.4i)T + (840.5 + 1.45e3i)T^{2} \)
43 \( 1 + (-29.7 + 17.1i)T + (924.5 - 1.60e3i)T^{2} \)
47 \( 1 + (-30.0 - 52.0i)T + (-1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 + 25.5T + 2.80e3T^{2} \)
59 \( 1 + (-35.1 - 20.2i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (34.6 + 59.9i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-52.0 - 30.0i)T + (2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 + 91.1iT - 5.04e3T^{2} \)
73 \( 1 - 74.8iT - 5.32e3T^{2} \)
79 \( 1 + (-30.8 - 53.3i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + (-29.2 - 50.6i)T + (-3.44e3 + 5.96e3i)T^{2} \)
89 \( 1 - 66.7iT - 7.92e3T^{2} \)
97 \( 1 + (136. - 79.0i)T + (4.70e3 - 8.14e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89647158417206206223224763087, −10.45841473630377911912107521537, −8.866785221248999392426469420922, −8.092162315504718310344855821847, −6.94486290402891506953534972156, −6.38980401963176581096817941820, −4.80999615488852532388661018649, −4.09807437704684966532954437249, −2.33188642216369955852032703329, −0.867785097758558144454976910811, 1.57614968251243638879224363507, 3.09567705610932950233261800942, 4.25159360684693906433381292282, 5.23315486413251505761562837067, 6.65645327415463079958151802439, 7.71920337479335618998887142255, 8.457141828114716235334531554876, 8.878958949546943210986567449687, 10.72144397826092121164159511750, 11.40386187978665889165736318016

Graph of the $Z$-function along the critical line