L(s) = 1 | + (−0.577 − 1.00i)2-s + (1.33 − 2.30i)4-s + (1.45 + 4.78i)5-s + (6.09 − 3.51i)7-s − 7.70·8-s + (3.94 − 4.22i)10-s + (4.54 − 2.62i)11-s + (−15.8 − 9.17i)13-s + (−7.04 − 4.06i)14-s + (−0.878 − 1.52i)16-s + 24.8·17-s + 25.3·19-s + (12.9 + 3.00i)20-s + (−5.25 − 3.03i)22-s + (−5.44 + 9.42i)23-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.500i)2-s + (0.333 − 0.576i)4-s + (0.291 + 0.956i)5-s + (0.870 − 0.502i)7-s − 0.962·8-s + (0.394 − 0.422i)10-s + (0.413 − 0.238i)11-s + (−1.22 − 0.706i)13-s + (−0.503 − 0.290i)14-s + (−0.0549 − 0.0951i)16-s + 1.46·17-s + 1.33·19-s + (0.648 + 0.150i)20-s + (−0.238 − 0.137i)22-s + (−0.236 + 0.409i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.206 + 0.978i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.206 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.38311 - 1.12115i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38311 - 1.12115i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.45 - 4.78i)T \) |
good | 2 | \( 1 + (0.577 + 1.00i)T + (-2 + 3.46i)T^{2} \) |
| 7 | \( 1 + (-6.09 + 3.51i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-4.54 + 2.62i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (15.8 + 9.17i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 24.8T + 289T^{2} \) |
| 19 | \( 1 - 25.3T + 361T^{2} \) |
| 23 | \( 1 + (5.44 - 9.42i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-24.0 + 13.8i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-20.5 + 35.6i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 28.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (37.0 + 21.3i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-41.0 + 23.7i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (15.1 + 26.2i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 - 1.12T + 2.80e3T^{2} \) |
| 59 | \( 1 + (44.2 + 25.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-39.1 - 67.8i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (18.3 + 10.6i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 14.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 112. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-8.96 - 15.5i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-58.3 - 101. i)T + (-3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 18.0iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-0.442 + 0.255i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69735700466485508594815843737, −10.06455901588973288812800387618, −9.490336747550517774558946012746, −7.86424164481508763021275054213, −7.25859098592104815478026536741, −5.98842461646309706714320246351, −5.17016092820688243297287541996, −3.44222690935911244424817093749, −2.34598824237185820523084819362, −0.949956463167870247499354973348,
1.47026448473469497688930665638, 2.96025018706459746721788536393, 4.62527765063307707699471800667, 5.41226917895940988562553305122, 6.66322933566558086857913943060, 7.70968421242939891810593024956, 8.344533963387018206372881399672, 9.266945169657735065034133500783, 10.00718546209186101612973413696, 11.71304430045251470440433746037