L(s) = 1 | + (0.652 + 0.652i)2-s − 3.14i·4-s + (4.83 + 1.27i)5-s + (8.09 + 8.09i)7-s + (4.66 − 4.66i)8-s + (2.32 + 3.98i)10-s + 2.60·11-s + (−2.08 + 2.08i)13-s + 10.5i·14-s − 6.49·16-s + (−13.6 − 13.6i)17-s + 11.4i·19-s + (3.99 − 15.2i)20-s + (1.70 + 1.70i)22-s + (7.89 − 7.89i)23-s + ⋯ |
L(s) = 1 | + (0.326 + 0.326i)2-s − 0.786i·4-s + (0.967 + 0.254i)5-s + (1.15 + 1.15i)7-s + (0.583 − 0.583i)8-s + (0.232 + 0.398i)10-s + 0.237·11-s + (−0.160 + 0.160i)13-s + 0.754i·14-s − 0.406·16-s + (−0.805 − 0.805i)17-s + 0.602i·19-s + (0.199 − 0.761i)20-s + (0.0774 + 0.0774i)22-s + (0.343 − 0.343i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.292i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.956 - 0.292i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.69952 + 0.403375i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.69952 + 0.403375i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-4.83 - 1.27i)T \) |
good | 2 | \( 1 + (-0.652 - 0.652i)T + 4iT^{2} \) |
| 7 | \( 1 + (-8.09 - 8.09i)T + 49iT^{2} \) |
| 11 | \( 1 - 2.60T + 121T^{2} \) |
| 13 | \( 1 + (2.08 - 2.08i)T - 169iT^{2} \) |
| 17 | \( 1 + (13.6 + 13.6i)T + 289iT^{2} \) |
| 19 | \( 1 - 11.4iT - 361T^{2} \) |
| 23 | \( 1 + (-7.89 + 7.89i)T - 529iT^{2} \) |
| 29 | \( 1 - 26.5iT - 841T^{2} \) |
| 31 | \( 1 - 43.7T + 961T^{2} \) |
| 37 | \( 1 + (-14.4 - 14.4i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 1.84T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-35.9 + 35.9i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (44.8 + 44.8i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-6.43 + 6.43i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 57.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 33.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + (22.9 + 22.9i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 63.3T + 5.04e3T^{2} \) |
| 73 | \( 1 + (50.9 - 50.9i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 68.8iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (74.5 - 74.5i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 136. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (25.8 + 25.8i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07359792095811696697057798729, −10.15631564041716811355084945315, −9.267681389383253781833083401928, −8.490452630708618572840013640246, −7.04553888659180798430099706525, −6.17116816303893349813351769856, −5.30661080729638748473482800843, −4.64239197881359452841625666838, −2.53338601889853475737421206577, −1.50644303311655297926675010220,
1.37599633209726248094207377649, 2.64460653632616627193093762664, 4.24013771183338890987560134349, 4.75479292894106357415203751104, 6.22499167678456328697567945600, 7.38988556705260103668852352396, 8.182286731067651278862891341576, 9.126196881316583498106406675689, 10.33363109731263497294925215571, 11.04751253085095456844759851475