L(s) = 1 | + (2.36 − 2.36i)2-s − 7.14i·4-s + (1.54 + 4.75i)5-s + (6.44 − 6.44i)7-s + (−7.41 − 7.41i)8-s + (14.8 + 7.58i)10-s − 2.04·11-s + (−3.06 − 3.06i)13-s − 30.4i·14-s − 6.44·16-s + (17.1 − 17.1i)17-s − 18.6i·19-s + (33.9 − 11.0i)20-s + (−4.83 + 4.83i)22-s + (8.42 + 8.42i)23-s + ⋯ |
L(s) = 1 | + (1.18 − 1.18i)2-s − 1.78i·4-s + (0.308 + 0.951i)5-s + (0.920 − 0.920i)7-s + (−0.927 − 0.927i)8-s + (1.48 + 0.758i)10-s − 0.186·11-s + (−0.235 − 0.235i)13-s − 2.17i·14-s − 0.402·16-s + (1.00 − 1.00i)17-s − 0.980i·19-s + (1.69 − 0.550i)20-s + (−0.219 + 0.219i)22-s + (0.366 + 0.366i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.237 + 0.971i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.237 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.23215 - 2.84464i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.23215 - 2.84464i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.54 - 4.75i)T \) |
good | 2 | \( 1 + (-2.36 + 2.36i)T - 4iT^{2} \) |
| 7 | \( 1 + (-6.44 + 6.44i)T - 49iT^{2} \) |
| 11 | \( 1 + 2.04T + 121T^{2} \) |
| 13 | \( 1 + (3.06 + 3.06i)T + 169iT^{2} \) |
| 17 | \( 1 + (-17.1 + 17.1i)T - 289iT^{2} \) |
| 19 | \( 1 + 18.6iT - 361T^{2} \) |
| 23 | \( 1 + (-8.42 - 8.42i)T + 529iT^{2} \) |
| 29 | \( 1 - 22.5iT - 841T^{2} \) |
| 31 | \( 1 + 23.8T + 961T^{2} \) |
| 37 | \( 1 + (33.2 - 33.2i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 4.31T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-22.2 - 22.2i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-0.614 + 0.614i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (3.33 + 3.33i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 76.5iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 70.7T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-15.2 + 15.2i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 28.6T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-48.1 - 48.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 0.232iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-112. - 112. i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 103. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (51.0 - 51.0i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93423744762141342099697988624, −10.38800042480180517654939452923, −9.446302503159999084834047326352, −7.74141837778779136023531094023, −6.93596948609409088986344650579, −5.48127113088104851039590210782, −4.76472705335528900778143747182, −3.52593436190982069577136371429, −2.65623604866697587913790862959, −1.27402500739155377250011633660,
1.86500753477990234913149669574, 3.71990429551734956920944248120, 4.81346550500974995557537983069, 5.52150405479686892613772842039, 6.13081872507587650927025353394, 7.61777508410804248959740771043, 8.221729679907170290771690023732, 9.092676960361564133583187428371, 10.41010896153189992627255406755, 11.88000631294763712696508595611