L(s) = 1 | + (1.54 − 1.54i)2-s − 0.766i·4-s + (−4.99 − 0.0220i)5-s + (1.44 − 1.44i)7-s + (4.99 + 4.99i)8-s + (−7.75 + 7.68i)10-s + 12.6·11-s + (9.41 + 9.41i)13-s − 4.45i·14-s + 18.4·16-s + (16.3 − 16.3i)17-s + 9.12i·19-s + (−0.0168 + 3.83i)20-s + (19.5 − 19.5i)22-s + (−15.6 − 15.6i)23-s + ⋯ |
L(s) = 1 | + (0.771 − 0.771i)2-s − 0.191i·4-s + (−0.999 − 0.00440i)5-s + (0.206 − 0.206i)7-s + (0.624 + 0.624i)8-s + (−0.775 + 0.768i)10-s + 1.15·11-s + (0.724 + 0.724i)13-s − 0.318i·14-s + 1.15·16-s + (0.960 − 0.960i)17-s + 0.480i·19-s + (−0.000843 + 0.191i)20-s + (0.888 − 0.888i)22-s + (−0.680 − 0.680i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.848 + 0.529i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.848 + 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.43895 - 0.698659i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.43895 - 0.698659i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (4.99 + 0.0220i)T \) |
good | 2 | \( 1 + (-1.54 + 1.54i)T - 4iT^{2} \) |
| 7 | \( 1 + (-1.44 + 1.44i)T - 49iT^{2} \) |
| 11 | \( 1 - 12.6T + 121T^{2} \) |
| 13 | \( 1 + (-9.41 - 9.41i)T + 169iT^{2} \) |
| 17 | \( 1 + (-16.3 + 16.3i)T - 289iT^{2} \) |
| 19 | \( 1 - 9.12iT - 361T^{2} \) |
| 23 | \( 1 + (15.6 + 15.6i)T + 529iT^{2} \) |
| 29 | \( 1 + 19.2iT - 841T^{2} \) |
| 31 | \( 1 - 18.6T + 961T^{2} \) |
| 37 | \( 1 + (32.6 - 32.6i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 51.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-33.7 - 33.7i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-37.6 + 37.6i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (18.2 + 18.2i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 99.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 103.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-13.8 + 13.8i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 54.5T + 5.04e3T^{2} \) |
| 73 | \( 1 + (8.13 + 8.13i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 141. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (48.1 + 48.1i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 59.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (80.4 - 80.4i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30258664291272376397056368957, −10.42359325387661105968127379063, −9.143991307715348698026346601739, −8.130246202668273037938016169915, −7.31584235530669841941832687341, −6.05566648807187177416611287823, −4.52418798233843131869320031972, −4.02224179544153418817079117450, −2.96733344425072320000905195623, −1.28426959938822004009626765995,
1.17117014731957850624347405170, 3.51696902882920631169565023675, 4.18144458028204346572557604988, 5.43824716623833327993032266679, 6.24757341731921298131063287381, 7.29567738067467517885168372430, 8.075225088501008561348567433323, 9.102621706443459904491527297669, 10.38300804916284267082593860459, 11.18838174726473187132362111677