Properties

Label 16-405e8-1.1-c1e8-0-0
Degree $16$
Conductor $7.238\times 10^{20}$
Sign $1$
Analytic cond. $11963.4$
Root an. cond. $1.79831$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 3·16-s + 16·19-s + 10·25-s + 16·31-s − 28·49-s + 4·61-s + 18·64-s − 16·76-s − 32·79-s − 10·100-s − 56·109-s + 44·121-s − 16·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 52·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1/2·4-s − 3/4·16-s + 3.67·19-s + 2·25-s + 2.87·31-s − 4·49-s + 0.512·61-s + 9/4·64-s − 1.83·76-s − 3.60·79-s − 100-s − 5.36·109-s + 4·121-s − 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{32} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{32} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{32} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(11963.4\)
Root analytic conductor: \(1.79831\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{32} \cdot 5^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.899298054\)
\(L(\frac12)\) \(\approx\) \(1.899298054\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
good2 \( ( 1 + T^{2} + p^{2} T^{4} )^{2}( 1 - T^{2} - 3 T^{4} - p^{2} T^{6} + p^{4} T^{8} ) \)
7 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
11 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
13 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
17 \( ( 1 + 14 T^{2} - 93 T^{4} + 14 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
19 \( ( 1 - 4 T - 3 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{4} \)
23 \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2}( 1 - 34 T^{2} + 627 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} ) \)
29 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
31 \( ( 1 - 8 T + p T^{2} )^{4}( 1 + 8 T + 33 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
37 \( ( 1 - p T^{2} )^{8} \)
41 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
43 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
47 \( ( 1 + 14 T^{2} - 2013 T^{4} + 14 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 + 86 T^{2} + 4587 T^{4} + 86 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
61 \( ( 1 - 2 T + p T^{2} )^{4}( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
67 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
71 \( ( 1 + p T^{2} )^{8} \)
73 \( ( 1 - p T^{2} )^{8} \)
79 \( ( 1 + 16 T + p T^{2} )^{4}( 1 - 16 T + 177 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
83 \( ( 1 + 154 T^{2} + p^{2} T^{4} )^{2}( 1 - 154 T^{2} + 16827 T^{4} - 154 p^{2} T^{6} + p^{4} T^{8} ) \)
89 \( ( 1 + p T^{2} )^{8} \)
97 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.89179685661454298787639906301, −4.78370008022067975672658132756, −4.76831029399161634698749427356, −4.58893464093038212514923734712, −4.56269239311471389251695290247, −4.42213957632051857657057412597, −4.14324830882665351523652488252, −3.90312531084741822078495608840, −3.67835556500156124020294831701, −3.61156036583542118361405869823, −3.55162444808671451560058563729, −3.34511668680752012295447771563, −3.06722801209360359387416902961, −2.87646697389536358768703109684, −2.80219041568417633658496251795, −2.79190737081343033503970162080, −2.66906928659380283514423495942, −2.24502026509057704541396943174, −2.07080736525656654125451378763, −1.79603871943058299405698620999, −1.38114417524495917557848196593, −1.24954117323933899279344390482, −1.07150790343425971607612439100, −1.00244626266093555539860855246, −0.28641021810243752565999534307, 0.28641021810243752565999534307, 1.00244626266093555539860855246, 1.07150790343425971607612439100, 1.24954117323933899279344390482, 1.38114417524495917557848196593, 1.79603871943058299405698620999, 2.07080736525656654125451378763, 2.24502026509057704541396943174, 2.66906928659380283514423495942, 2.79190737081343033503970162080, 2.80219041568417633658496251795, 2.87646697389536358768703109684, 3.06722801209360359387416902961, 3.34511668680752012295447771563, 3.55162444808671451560058563729, 3.61156036583542118361405869823, 3.67835556500156124020294831701, 3.90312531084741822078495608840, 4.14324830882665351523652488252, 4.42213957632051857657057412597, 4.56269239311471389251695290247, 4.58893464093038212514923734712, 4.76831029399161634698749427356, 4.78370008022067975672658132756, 4.89179685661454298787639906301

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.