Properties

Label 2-4032-3.2-c2-0-93
Degree $2$
Conductor $4032$
Sign $-0.577 - 0.816i$
Analytic cond. $109.864$
Root an. cond. $10.4816$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.07i·5-s + 2.64·7-s − 2.06i·11-s + 4.46·13-s + 9.11i·17-s + 5.96·19-s − 19.7i·23-s − 57.2·25-s − 6.15i·29-s − 53.8·31-s − 23.9i·35-s + 36.4·37-s + 64.4i·41-s − 73.4·43-s + 22.5i·47-s + ⋯
L(s)  = 1  − 1.81i·5-s + 0.377·7-s − 0.188i·11-s + 0.343·13-s + 0.536i·17-s + 0.314·19-s − 0.856i·23-s − 2.29·25-s − 0.212i·29-s − 1.73·31-s − 0.685i·35-s + 0.984·37-s + 1.57i·41-s − 1.70·43-s + 0.478i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $-0.577 - 0.816i$
Analytic conductor: \(109.864\)
Root analytic conductor: \(10.4816\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{4032} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1),\ -0.577 - 0.816i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2520600986\)
\(L(\frac12)\) \(\approx\) \(0.2520600986\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - 2.64T \)
good5 \( 1 + 9.07iT - 25T^{2} \)
11 \( 1 + 2.06iT - 121T^{2} \)
13 \( 1 - 4.46T + 169T^{2} \)
17 \( 1 - 9.11iT - 289T^{2} \)
19 \( 1 - 5.96T + 361T^{2} \)
23 \( 1 + 19.7iT - 529T^{2} \)
29 \( 1 + 6.15iT - 841T^{2} \)
31 \( 1 + 53.8T + 961T^{2} \)
37 \( 1 - 36.4T + 1.36e3T^{2} \)
41 \( 1 - 64.4iT - 1.68e3T^{2} \)
43 \( 1 + 73.4T + 1.84e3T^{2} \)
47 \( 1 - 22.5iT - 2.20e3T^{2} \)
53 \( 1 - 14.5iT - 2.80e3T^{2} \)
59 \( 1 - 71.8iT - 3.48e3T^{2} \)
61 \( 1 - 38.8T + 3.72e3T^{2} \)
67 \( 1 + 92.4T + 4.48e3T^{2} \)
71 \( 1 + 29.8iT - 5.04e3T^{2} \)
73 \( 1 + 62.3T + 5.32e3T^{2} \)
79 \( 1 + 120.T + 6.24e3T^{2} \)
83 \( 1 + 110. iT - 6.88e3T^{2} \)
89 \( 1 + 125. iT - 7.92e3T^{2} \)
97 \( 1 + 89.6T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.062271720506108779289432865051, −7.21139254838676224567448886615, −6.03015577857333115148074237363, −5.58798054854652565304057812010, −4.61925435015456652236720369031, −4.29327914529146489474232192491, −3.15134292360954436572375974356, −1.79018327278306906048935444230, −1.16324710083267696075217577846, −0.05135009309011323468070128093, 1.62670797877387145325411480706, 2.48883920387043821521334298136, 3.37059815935791851533475057025, 3.91361737447834648186467913299, 5.18756554804560358870430345921, 5.82487414058280962829022881094, 6.75638798549282606826236141173, 7.21344372467552162335461381896, 7.77250256055169532606346593417, 8.724412616325721321895643677957

Graph of the $Z$-function along the critical line