Properties

Label 2-4032-3.2-c2-0-88
Degree $2$
Conductor $4032$
Sign $-0.577 + 0.816i$
Analytic cond. $109.864$
Root an. cond. $10.4816$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.54i·5-s + 2.64·7-s − 5.28i·11-s + 17.4·13-s + 7.16i·17-s − 12.1·19-s − 41.2i·23-s + 22.6·25-s − 38.3i·29-s − 45.2·31-s + 4.08i·35-s − 52.5·37-s − 64.3i·41-s − 40.6·43-s + 79.0i·47-s + ⋯
L(s)  = 1  + 0.308i·5-s + 0.377·7-s − 0.480i·11-s + 1.34·13-s + 0.421i·17-s − 0.639·19-s − 1.79i·23-s + 0.904·25-s − 1.32i·29-s − 1.45·31-s + 0.116i·35-s − 1.42·37-s − 1.56i·41-s − 0.946·43-s + 1.68i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $-0.577 + 0.816i$
Analytic conductor: \(109.864\)
Root analytic conductor: \(10.4816\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{4032} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1),\ -0.577 + 0.816i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.169316717\)
\(L(\frac12)\) \(\approx\) \(1.169316717\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - 2.64T \)
good5 \( 1 - 1.54iT - 25T^{2} \)
11 \( 1 + 5.28iT - 121T^{2} \)
13 \( 1 - 17.4T + 169T^{2} \)
17 \( 1 - 7.16iT - 289T^{2} \)
19 \( 1 + 12.1T + 361T^{2} \)
23 \( 1 + 41.2iT - 529T^{2} \)
29 \( 1 + 38.3iT - 841T^{2} \)
31 \( 1 + 45.2T + 961T^{2} \)
37 \( 1 + 52.5T + 1.36e3T^{2} \)
41 \( 1 + 64.3iT - 1.68e3T^{2} \)
43 \( 1 + 40.6T + 1.84e3T^{2} \)
47 \( 1 - 79.0iT - 2.20e3T^{2} \)
53 \( 1 - 88.4iT - 2.80e3T^{2} \)
59 \( 1 + 39.6iT - 3.48e3T^{2} \)
61 \( 1 + 94.2T + 3.72e3T^{2} \)
67 \( 1 - 13.2T + 4.48e3T^{2} \)
71 \( 1 + 62.1iT - 5.04e3T^{2} \)
73 \( 1 - 12.8T + 5.32e3T^{2} \)
79 \( 1 - 114.T + 6.24e3T^{2} \)
83 \( 1 - 42.7iT - 6.88e3T^{2} \)
89 \( 1 + 9.41iT - 7.92e3T^{2} \)
97 \( 1 - 63.2T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.170478142617303399323719392971, −7.28463481969906771620627124539, −6.36953626339317683248854965434, −6.03036980493052568764765685578, −4.98678771537883417268744721470, −4.13090781184627148838635272855, −3.42431404741993393746603519436, −2.40837662691366466455524589791, −1.43400772010840695438132652158, −0.23840363732616093626411654439, 1.27329834252826190550639459159, 1.86518711171746635062948535450, 3.30004263098252592166996074108, 3.80403163222020821221769032686, 5.02818744052679946331499713216, 5.29961952871187575360621381679, 6.41807527084431460896235381252, 7.05124028168302407610847891574, 7.81265372472077609139306683180, 8.704171417633046642133279212552

Graph of the $Z$-function along the critical line