Properties

Label 2-4032-3.2-c2-0-45
Degree $2$
Conductor $4032$
Sign $0.577 - 0.816i$
Analytic cond. $109.864$
Root an. cond. $10.4816$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.07i·5-s − 2.64·7-s − 2.06i·11-s + 4.46·13-s − 9.11i·17-s − 5.96·19-s − 19.7i·23-s − 57.2·25-s + 6.15i·29-s + 53.8·31-s − 23.9i·35-s + 36.4·37-s − 64.4i·41-s + 73.4·43-s + 22.5i·47-s + ⋯
L(s)  = 1  + 1.81i·5-s − 0.377·7-s − 0.188i·11-s + 0.343·13-s − 0.536i·17-s − 0.314·19-s − 0.856i·23-s − 2.29·25-s + 0.212i·29-s + 1.73·31-s − 0.685i·35-s + 0.984·37-s − 1.57i·41-s + 1.70·43-s + 0.478i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $0.577 - 0.816i$
Analytic conductor: \(109.864\)
Root analytic conductor: \(10.4816\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{4032} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1),\ 0.577 - 0.816i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.038900691\)
\(L(\frac12)\) \(\approx\) \(2.038900691\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + 2.64T \)
good5 \( 1 - 9.07iT - 25T^{2} \)
11 \( 1 + 2.06iT - 121T^{2} \)
13 \( 1 - 4.46T + 169T^{2} \)
17 \( 1 + 9.11iT - 289T^{2} \)
19 \( 1 + 5.96T + 361T^{2} \)
23 \( 1 + 19.7iT - 529T^{2} \)
29 \( 1 - 6.15iT - 841T^{2} \)
31 \( 1 - 53.8T + 961T^{2} \)
37 \( 1 - 36.4T + 1.36e3T^{2} \)
41 \( 1 + 64.4iT - 1.68e3T^{2} \)
43 \( 1 - 73.4T + 1.84e3T^{2} \)
47 \( 1 - 22.5iT - 2.20e3T^{2} \)
53 \( 1 + 14.5iT - 2.80e3T^{2} \)
59 \( 1 - 71.8iT - 3.48e3T^{2} \)
61 \( 1 - 38.8T + 3.72e3T^{2} \)
67 \( 1 - 92.4T + 4.48e3T^{2} \)
71 \( 1 + 29.8iT - 5.04e3T^{2} \)
73 \( 1 + 62.3T + 5.32e3T^{2} \)
79 \( 1 - 120.T + 6.24e3T^{2} \)
83 \( 1 + 110. iT - 6.88e3T^{2} \)
89 \( 1 - 125. iT - 7.92e3T^{2} \)
97 \( 1 + 89.6T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.270193292704115986552481034196, −7.50856372473674578110028957860, −6.84336713415677760326375451613, −6.31685020768325240372612456953, −5.69359493969924968763975826258, −4.43011886010943057608462740679, −3.66049247462478956773381528515, −2.77368245741360816194314018300, −2.34726811456185914884873027822, −0.69418418008487042953940652778, 0.67147657396298594262272893742, 1.38828399520585577843519404457, 2.50646019379601063650489974529, 3.77854600984269754270244384148, 4.40046535021392164142390983984, 5.10754798727250969400927497509, 5.90147347704697544776561215032, 6.51491657524021897754009173247, 7.72684719226660903807118612857, 8.209970054439159080072182406224

Graph of the $Z$-function along the critical line