Properties

Label 2-4032-56.27-c1-0-50
Degree $2$
Conductor $4032$
Sign $0.921 - 0.387i$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82·5-s + (2.44 + i)7-s + 3.46·11-s + 3.00·25-s + 10.3i·29-s + 4.89·31-s + (6.92 + 2.82i)35-s + (4.99 + 4.89i)49-s − 3.46i·53-s + 9.79·55-s − 11.3i·59-s + 9.79i·73-s + (8.48 + 3.46i)77-s − 10i·79-s − 5.65i·83-s + ⋯
L(s)  = 1  + 1.26·5-s + (0.925 + 0.377i)7-s + 1.04·11-s + 0.600·25-s + 1.92i·29-s + 0.879·31-s + (1.17 + 0.478i)35-s + (0.714 + 0.699i)49-s − 0.475i·53-s + 1.32·55-s − 1.47i·59-s + 1.14i·73-s + (0.966 + 0.394i)77-s − 1.12i·79-s − 0.620i·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.921 - 0.387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.921 - 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $0.921 - 0.387i$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4032} (1567, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ 0.921 - 0.387i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.090006877\)
\(L(\frac12)\) \(\approx\) \(3.090006877\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-2.44 - i)T \)
good5 \( 1 - 2.82T + 5T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 - 10.3iT - 29T^{2} \)
31 \( 1 - 4.89T + 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 3.46iT - 53T^{2} \)
59 \( 1 + 11.3iT - 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 - 9.79iT - 73T^{2} \)
79 \( 1 + 10iT - 79T^{2} \)
83 \( 1 + 5.65iT - 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 - 19.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.651118435546518761872885873202, −7.83801105569528023830436876058, −6.82403109860327361110252143200, −6.32552175909732720044882215198, −5.43257324244942868918999172969, −4.95095124586192884167671849206, −3.94681245089102880174134105378, −2.85351798921936356053279622551, −1.87137014662702087244825124698, −1.25676149279013196196994183596, 1.00794627169091646984386145154, 1.84100185599635969594692002599, 2.67232138502362879615783706241, 3.98683167670790432418336543091, 4.57062957692753102987189685376, 5.54948116788909393405525358844, 6.12921880322043099919679818491, 6.82664001011430475779761028812, 7.70784116635654382832031236199, 8.424370292505083096620465437149

Graph of the $Z$-function along the critical line