Properties

Label 2-4032-21.20-c1-0-57
Degree $2$
Conductor $4032$
Sign $-0.443 + 0.896i$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.61·5-s + (−1.25 − 2.32i)7-s − 4.29i·11-s − 1.53i·13-s + 0.448·17-s + 1.92i·19-s + 0.737i·23-s + 1.82·25-s − 1.41i·29-s − 6.58i·31-s + (−3.29 − 6.08i)35-s + 2.82·37-s + 6.94·41-s − 9.64·43-s + 2.72·47-s + ⋯
L(s)  = 1  + 1.16·5-s + (−0.475 − 0.879i)7-s − 1.29i·11-s − 0.424i·13-s + 0.108·17-s + 0.442i·19-s + 0.153i·23-s + 0.365·25-s − 0.262i·29-s − 1.18i·31-s + (−0.556 − 1.02i)35-s + 0.464·37-s + 1.08·41-s − 1.47·43-s + 0.397·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.443 + 0.896i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.443 + 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $-0.443 + 0.896i$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4032} (3905, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ -0.443 + 0.896i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.767416315\)
\(L(\frac12)\) \(\approx\) \(1.767416315\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (1.25 + 2.32i)T \)
good5 \( 1 - 2.61T + 5T^{2} \)
11 \( 1 + 4.29iT - 11T^{2} \)
13 \( 1 + 1.53iT - 13T^{2} \)
17 \( 1 - 0.448T + 17T^{2} \)
19 \( 1 - 1.92iT - 19T^{2} \)
23 \( 1 - 0.737iT - 23T^{2} \)
29 \( 1 + 1.41iT - 29T^{2} \)
31 \( 1 + 6.58iT - 31T^{2} \)
37 \( 1 - 2.82T + 37T^{2} \)
41 \( 1 - 6.94T + 41T^{2} \)
43 \( 1 + 9.64T + 43T^{2} \)
47 \( 1 - 2.72T + 47T^{2} \)
53 \( 1 + 2.58iT - 53T^{2} \)
59 \( 1 + 9.30T + 59T^{2} \)
61 \( 1 - 8.28iT - 61T^{2} \)
67 \( 1 - 1.47T + 67T^{2} \)
71 \( 1 + 11.4iT - 71T^{2} \)
73 \( 1 + 11.0iT - 73T^{2} \)
79 \( 1 - 15.7T + 79T^{2} \)
83 \( 1 + 15.8T + 83T^{2} \)
89 \( 1 + 17.3T + 89T^{2} \)
97 \( 1 - 6.75iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.127433182071587601041809183975, −7.55956677550106347516728451413, −6.51413102088172057860593141724, −6.00769500397961318955674445182, −5.47325536228026457595557635322, −4.35185263387810005081784822276, −3.48087017943174635285452809289, −2.71376716068360621146819910049, −1.55439191129801752196315683164, −0.47969363205777208393306780272, 1.49729244474742230443658134247, 2.26443051397656908100982998661, 2.98849411872399286185090565914, 4.23904124583290924981722688537, 5.09739743040148715970824179268, 5.66986632082293728477490958804, 6.56831918390134741881967191158, 6.93474431828726317313584299111, 8.009426615378342004006433850706, 8.899115964433851897970607791879

Graph of the $Z$-function along the critical line