Properties

Label 2-4032-24.11-c1-0-24
Degree $2$
Conductor $4032$
Sign $0.769 + 0.639i$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.51·5-s + i·7-s − 0.935i·11-s + 2.14i·13-s − 2.62i·17-s + 3.46·19-s − 6.86·23-s − 2.70·25-s + 2.44·29-s − 2i·31-s − 1.51i·35-s − 2.14i·37-s − 2.62i·41-s + 7.74·43-s − 49-s + ⋯
L(s)  = 1  − 0.677·5-s + 0.377i·7-s − 0.282i·11-s + 0.593i·13-s − 0.635i·17-s + 0.794·19-s − 1.43·23-s − 0.541·25-s + 0.454·29-s − 0.359i·31-s − 0.255i·35-s − 0.351i·37-s − 0.409i·41-s + 1.18·43-s − 0.142·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.769 + 0.639i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.769 + 0.639i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $0.769 + 0.639i$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4032} (2591, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ 0.769 + 0.639i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.313461755\)
\(L(\frac12)\) \(\approx\) \(1.313461755\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - iT \)
good5 \( 1 + 1.51T + 5T^{2} \)
11 \( 1 + 0.935iT - 11T^{2} \)
13 \( 1 - 2.14iT - 13T^{2} \)
17 \( 1 + 2.62iT - 17T^{2} \)
19 \( 1 - 3.46T + 19T^{2} \)
23 \( 1 + 6.86T + 23T^{2} \)
29 \( 1 - 2.44T + 29T^{2} \)
31 \( 1 + 2iT - 31T^{2} \)
37 \( 1 + 2.14iT - 37T^{2} \)
41 \( 1 + 2.62iT - 41T^{2} \)
43 \( 1 - 7.74T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 10.3T + 53T^{2} \)
59 \( 1 + 9.79iT - 59T^{2} \)
61 \( 1 - 11.2iT - 61T^{2} \)
67 \( 1 + 2.14T + 67T^{2} \)
71 \( 1 + 1.62T + 71T^{2} \)
73 \( 1 + 5.70T + 73T^{2} \)
79 \( 1 - 1.70iT - 79T^{2} \)
83 \( 1 + 1.87iT - 83T^{2} \)
89 \( 1 - 2.62iT - 89T^{2} \)
97 \( 1 - 17.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.321649658579735526698362031587, −7.62261406455305750669619783829, −7.05612607191046131437865850661, −6.04823772723526625617356029264, −5.48940631044749585461164692241, −4.42867358418825092684369796245, −3.84854910362046742523400573919, −2.86761018616851718425397393790, −1.91756556501572744962387892512, −0.50476464160693743428662373347, 0.841276518142740889112856152390, 2.07229246632545079181621063676, 3.21103863959386440193113641840, 3.93752412080038698263470070993, 4.61797154307980365382762020242, 5.62275370171588646406478456288, 6.27236060122550872406781010111, 7.27908278036493515311108320067, 7.76315649440014730806193332557, 8.348075361817996552868813410657

Graph of the $Z$-function along the critical line