Properties

Label 2-4032-12.11-c1-0-2
Degree $2$
Conductor $4032$
Sign $-0.816 - 0.577i$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.03i·5-s + i·7-s + 0.378·11-s − 2·13-s + 3.86i·17-s − 1.46i·19-s − 5.27·23-s + 3.92·25-s − 3.48i·29-s + 2.53i·31-s + 1.03·35-s − 2.92·37-s + 8.76i·41-s − 4i·43-s − 8.48·47-s + ⋯
L(s)  = 1  − 0.462i·5-s + 0.377i·7-s + 0.114·11-s − 0.554·13-s + 0.937i·17-s − 0.335i·19-s − 1.10·23-s + 0.785·25-s − 0.647i·29-s + 0.455i·31-s + 0.174·35-s − 0.481·37-s + 1.36i·41-s − 0.609i·43-s − 1.23·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $-0.816 - 0.577i$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4032} (575, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ -0.816 - 0.577i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4733625824\)
\(L(\frac12)\) \(\approx\) \(0.4733625824\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - iT \)
good5 \( 1 + 1.03iT - 5T^{2} \)
11 \( 1 - 0.378T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 - 3.86iT - 17T^{2} \)
19 \( 1 + 1.46iT - 19T^{2} \)
23 \( 1 + 5.27T + 23T^{2} \)
29 \( 1 + 3.48iT - 29T^{2} \)
31 \( 1 - 2.53iT - 31T^{2} \)
37 \( 1 + 2.92T + 37T^{2} \)
41 \( 1 - 8.76iT - 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 8.48T + 47T^{2} \)
53 \( 1 + 7.07iT - 53T^{2} \)
59 \( 1 + 2.82T + 59T^{2} \)
61 \( 1 + 3.46T + 61T^{2} \)
67 \( 1 - 8.53iT - 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 - 7.46T + 73T^{2} \)
79 \( 1 - 10.3iT - 79T^{2} \)
83 \( 1 + 17.5T + 83T^{2} \)
89 \( 1 + 1.03iT - 89T^{2} \)
97 \( 1 - 4.53T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.494650518432491597501263637159, −8.283015970709423336394244945838, −7.27026937983668489406595188281, −6.49084264969006502600496686161, −5.78085661923982013432472799746, −4.96269211652569372922987070681, −4.28726185801003041537927826548, −3.31947394032537605375467319529, −2.32011793205413141339681012209, −1.35873983513891502876849621757, 0.13198158464834490890815825075, 1.57018560794972513846132592052, 2.64979457723044386617528102893, 3.42568263243295025944483309618, 4.36528220404601243380546598004, 5.10499113389231277479186172093, 5.99845323791450624806251889889, 6.78326140310516385154817518979, 7.38429334939684247835328427124, 8.006658475750344919869069534062

Graph of the $Z$-function along the critical line