| L(s)  = 1 | − 1.44i·2-s   + 0.0382·3-s   − 0.100·4-s   + 3.85i·5-s   − 0.0554i·6-s   + 1.66i·7-s   − 2.75i·8-s   − 2.99·9-s   + 5.59·10-s   + 1.88i·11-s   − 0.00384·12-s   + (1.08 + 3.43i)13-s   + 2.40·14-s   + 0.147i·15-s   − 4.19·16-s   + 3.75·17-s  + ⋯ | 
| L(s)  = 1 | − 1.02i·2-s   + 0.0220·3-s   − 0.0503·4-s   + 1.72i·5-s   − 0.0226i·6-s   + 0.628i·7-s   − 0.973i·8-s   − 0.999·9-s   + 1.76·10-s   + 0.566i·11-s   − 0.00111·12-s   + (0.301 + 0.953i)13-s   + 0.643·14-s   + 0.0381i·15-s   − 1.04·16-s   + 0.909·17-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.301i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.953 - 0.301i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.37363 + 0.211729i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.37363 + 0.211729i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 13 | \( 1 + (-1.08 - 3.43i)T \) | 
|  | 31 | \( 1 - iT \) | 
| good | 2 | \( 1 + 1.44iT - 2T^{2} \) | 
|  | 3 | \( 1 - 0.0382T + 3T^{2} \) | 
|  | 5 | \( 1 - 3.85iT - 5T^{2} \) | 
|  | 7 | \( 1 - 1.66iT - 7T^{2} \) | 
|  | 11 | \( 1 - 1.88iT - 11T^{2} \) | 
|  | 17 | \( 1 - 3.75T + 17T^{2} \) | 
|  | 19 | \( 1 - 3.26iT - 19T^{2} \) | 
|  | 23 | \( 1 - 5.31T + 23T^{2} \) | 
|  | 29 | \( 1 - 3.11T + 29T^{2} \) | 
|  | 37 | \( 1 + 11.5iT - 37T^{2} \) | 
|  | 41 | \( 1 + 7.94iT - 41T^{2} \) | 
|  | 43 | \( 1 + 9.24T + 43T^{2} \) | 
|  | 47 | \( 1 - 6.97iT - 47T^{2} \) | 
|  | 53 | \( 1 - 6.11T + 53T^{2} \) | 
|  | 59 | \( 1 + 12.1iT - 59T^{2} \) | 
|  | 61 | \( 1 - 1.75T + 61T^{2} \) | 
|  | 67 | \( 1 - 7.94iT - 67T^{2} \) | 
|  | 71 | \( 1 - 0.735iT - 71T^{2} \) | 
|  | 73 | \( 1 - 13.5iT - 73T^{2} \) | 
|  | 79 | \( 1 + 5.66T + 79T^{2} \) | 
|  | 83 | \( 1 + 13.7iT - 83T^{2} \) | 
|  | 89 | \( 1 - 10.2iT - 89T^{2} \) | 
|  | 97 | \( 1 + 8.34iT - 97T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−11.32807571851903265089601824551, −10.58800923155299158985465261114, −9.844955990935650629798750531087, −8.828600845345598277908040188106, −7.40094339122801876023979053539, −6.64564015609238126559716533211, −5.66531183879857994908749316707, −3.78282394472996448841528630712, −2.92608673831503691028816730563, −2.06046572575067476436516906155, 
0.939047223363470004914495963438, 3.11572100545275452388798437008, 4.85194328306705359141015143869, 5.40641223564695592750581498102, 6.37559923499779255873739449418, 7.68359736815646197965724295136, 8.408090681681962062337480590180, 8.870215906143924106040739041685, 10.22179324222868267366938361501, 11.38273254614174062813345216825
