Properties

Label 2-4000-1.1-c1-0-94
Degree $2$
Conductor $4000$
Sign $-1$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.74·3-s − 1.42·7-s + 4.51·9-s + 0.375·11-s − 6.69·13-s − 1.44·17-s − 6.63·19-s − 3.90·21-s − 6.67·23-s + 4.16·27-s + 0.174·29-s + 7.61·31-s + 1.02·33-s − 8.13·37-s − 18.3·39-s + 7.97·41-s + 4.98·43-s − 1.11·47-s − 4.97·49-s − 3.95·51-s − 1.52·53-s − 18.1·57-s − 10.1·59-s − 8.96·61-s − 6.42·63-s − 8.03·67-s − 18.3·69-s + ⋯
L(s)  = 1  + 1.58·3-s − 0.537·7-s + 1.50·9-s + 0.113·11-s − 1.85·13-s − 0.350·17-s − 1.52·19-s − 0.851·21-s − 1.39·23-s + 0.801·27-s + 0.0324·29-s + 1.36·31-s + 0.179·33-s − 1.33·37-s − 2.93·39-s + 1.24·41-s + 0.759·43-s − 0.162·47-s − 0.710·49-s − 0.554·51-s − 0.209·53-s − 2.40·57-s − 1.31·59-s − 1.14·61-s − 0.809·63-s − 0.981·67-s − 2.20·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 2.74T + 3T^{2} \)
7 \( 1 + 1.42T + 7T^{2} \)
11 \( 1 - 0.375T + 11T^{2} \)
13 \( 1 + 6.69T + 13T^{2} \)
17 \( 1 + 1.44T + 17T^{2} \)
19 \( 1 + 6.63T + 19T^{2} \)
23 \( 1 + 6.67T + 23T^{2} \)
29 \( 1 - 0.174T + 29T^{2} \)
31 \( 1 - 7.61T + 31T^{2} \)
37 \( 1 + 8.13T + 37T^{2} \)
41 \( 1 - 7.97T + 41T^{2} \)
43 \( 1 - 4.98T + 43T^{2} \)
47 \( 1 + 1.11T + 47T^{2} \)
53 \( 1 + 1.52T + 53T^{2} \)
59 \( 1 + 10.1T + 59T^{2} \)
61 \( 1 + 8.96T + 61T^{2} \)
67 \( 1 + 8.03T + 67T^{2} \)
71 \( 1 + 7.84T + 71T^{2} \)
73 \( 1 - 8.05T + 73T^{2} \)
79 \( 1 + 0.231T + 79T^{2} \)
83 \( 1 - 7.21T + 83T^{2} \)
89 \( 1 - 5.85T + 89T^{2} \)
97 \( 1 - 8.49T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.949933276330183384158370752132, −7.68222601298473413899519210205, −6.73303788798758049346968070385, −6.07390573726651803994177292225, −4.71175231371712244023391389531, −4.22141398161134357029645812897, −3.22899582593578292900470707375, −2.48377480319880281784708023715, −1.91611783894612412282834198875, 0, 1.91611783894612412282834198875, 2.48377480319880281784708023715, 3.22899582593578292900470707375, 4.22141398161134357029645812897, 4.71175231371712244023391389531, 6.07390573726651803994177292225, 6.73303788798758049346968070385, 7.68222601298473413899519210205, 7.949933276330183384158370752132

Graph of the $Z$-function along the critical line