Properties

Label 2-4000-1.1-c1-0-77
Degree $2$
Conductor $4000$
Sign $-1$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.420·3-s + 2.86·7-s − 2.82·9-s − 3.96·11-s − 3.36·13-s + 4.80·17-s − 7.66·19-s + 1.20·21-s + 8.44·23-s − 2.44·27-s + 4.18·29-s + 6.15·31-s − 1.66·33-s + 1.44·37-s − 1.41·39-s + 1.77·41-s − 7.76·43-s − 11.0·47-s + 1.22·49-s + 2.01·51-s − 10.4·53-s − 3.22·57-s + 7.19·59-s − 14.7·61-s − 8.09·63-s + 9.39·67-s + 3.55·69-s + ⋯
L(s)  = 1  + 0.242·3-s + 1.08·7-s − 0.941·9-s − 1.19·11-s − 0.932·13-s + 1.16·17-s − 1.75·19-s + 0.263·21-s + 1.76·23-s − 0.471·27-s + 0.777·29-s + 1.10·31-s − 0.290·33-s + 0.236·37-s − 0.226·39-s + 0.277·41-s − 1.18·43-s − 1.61·47-s + 0.174·49-s + 0.282·51-s − 1.43·53-s − 0.426·57-s + 0.936·59-s − 1.88·61-s − 1.02·63-s + 1.14·67-s + 0.427·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 0.420T + 3T^{2} \)
7 \( 1 - 2.86T + 7T^{2} \)
11 \( 1 + 3.96T + 11T^{2} \)
13 \( 1 + 3.36T + 13T^{2} \)
17 \( 1 - 4.80T + 17T^{2} \)
19 \( 1 + 7.66T + 19T^{2} \)
23 \( 1 - 8.44T + 23T^{2} \)
29 \( 1 - 4.18T + 29T^{2} \)
31 \( 1 - 6.15T + 31T^{2} \)
37 \( 1 - 1.44T + 37T^{2} \)
41 \( 1 - 1.77T + 41T^{2} \)
43 \( 1 + 7.76T + 43T^{2} \)
47 \( 1 + 11.0T + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 - 7.19T + 59T^{2} \)
61 \( 1 + 14.7T + 61T^{2} \)
67 \( 1 - 9.39T + 67T^{2} \)
71 \( 1 + 12.5T + 71T^{2} \)
73 \( 1 + 16.7T + 73T^{2} \)
79 \( 1 + 6.42T + 79T^{2} \)
83 \( 1 + 4.07T + 83T^{2} \)
89 \( 1 + 0.854T + 89T^{2} \)
97 \( 1 + 5.04T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.270462729541736660004375657902, −7.56282564944197137945969250133, −6.65581436484984722004902481783, −5.73446374999816631047501583419, −4.92111965620508130805772345519, −4.60716873296616728856115335870, −3.07790781335180670306451495514, −2.65543426674096998592805316737, −1.51566728520758612798854974738, 0, 1.51566728520758612798854974738, 2.65543426674096998592805316737, 3.07790781335180670306451495514, 4.60716873296616728856115335870, 4.92111965620508130805772345519, 5.73446374999816631047501583419, 6.65581436484984722004902481783, 7.56282564944197137945969250133, 8.270462729541736660004375657902

Graph of the $Z$-function along the critical line