Properties

Label 2-20e2-5.4-c7-0-38
Degree $2$
Conductor $400$
Sign $0.447 + 0.894i$
Analytic cond. $124.954$
Root an. cond. $11.1782$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 59.7i·3-s + 438. i·7-s − 1.38e3·9-s − 5.75e3·11-s − 3.53e3i·13-s + 2.39e4i·17-s + 1.65e4·19-s − 2.61e4·21-s + 6.56e4i·23-s + 4.80e4i·27-s − 1.34e5·29-s − 1.29e5·31-s − 3.44e5i·33-s − 1.61e5i·37-s + 2.10e5·39-s + ⋯
L(s)  = 1  + 1.27i·3-s + 0.482i·7-s − 0.631·9-s − 1.30·11-s − 0.445i·13-s + 1.18i·17-s + 0.554·19-s − 0.616·21-s + 1.12i·23-s + 0.470i·27-s − 1.02·29-s − 0.777·31-s − 1.66i·33-s − 0.522i·37-s + 0.569·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(124.954\)
Root analytic conductor: \(11.1782\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :7/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.1388723527\)
\(L(\frac12)\) \(\approx\) \(0.1388723527\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 59.7iT - 2.18e3T^{2} \)
7 \( 1 - 438. iT - 8.23e5T^{2} \)
11 \( 1 + 5.75e3T + 1.94e7T^{2} \)
13 \( 1 + 3.53e3iT - 6.27e7T^{2} \)
17 \( 1 - 2.39e4iT - 4.10e8T^{2} \)
19 \( 1 - 1.65e4T + 8.93e8T^{2} \)
23 \( 1 - 6.56e4iT - 3.40e9T^{2} \)
29 \( 1 + 1.34e5T + 1.72e10T^{2} \)
31 \( 1 + 1.29e5T + 2.75e10T^{2} \)
37 \( 1 + 1.61e5iT - 9.49e10T^{2} \)
41 \( 1 + 3.62e5T + 1.94e11T^{2} \)
43 \( 1 + 5.88e5iT - 2.71e11T^{2} \)
47 \( 1 - 3.43e5iT - 5.06e11T^{2} \)
53 \( 1 + 1.66e6iT - 1.17e12T^{2} \)
59 \( 1 + 2.54e6T + 2.48e12T^{2} \)
61 \( 1 - 2.52e6T + 3.14e12T^{2} \)
67 \( 1 - 1.56e6iT - 6.06e12T^{2} \)
71 \( 1 - 2.99e5T + 9.09e12T^{2} \)
73 \( 1 - 3.12e5iT - 1.10e13T^{2} \)
79 \( 1 + 1.95e6T + 1.92e13T^{2} \)
83 \( 1 - 6.21e5iT - 2.71e13T^{2} \)
89 \( 1 + 5.78e6T + 4.42e13T^{2} \)
97 \( 1 + 7.20e6iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02021327266564090686881495300, −9.186612427021295885113330025218, −8.247394004162863239209260838354, −7.28337677361872083820982113200, −5.60277421073355091231339236556, −5.30820399879821900283407558092, −3.97835859883630166132138115744, −3.17460544010588204950825370308, −1.85159152900088429812577339675, −0.03206930814148892923898344113, 0.898225616622116224618004423504, 2.05323557351448525339766254287, 3.00523475630506274519656812089, 4.54908149208474152723578358097, 5.61723067415261720381248308101, 6.78560662261644553489780872780, 7.41538764714849426432594726885, 8.097972073282876305048015208154, 9.286521564246585792148560290487, 10.33240248262101447475358009118

Graph of the $Z$-function along the critical line