Properties

Label 2-20e2-5.4-c7-0-47
Degree $2$
Conductor $400$
Sign $0.447 + 0.894i$
Analytic cond. $124.954$
Root an. cond. $11.1782$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6i·3-s − 706i·7-s + 2.15e3·9-s + 3.84e3·11-s − 4.05e3i·13-s − 858i·17-s + 2.10e4·19-s + 4.23e3·21-s − 8.53e4i·23-s + 2.60e4i·27-s + 8.31e4·29-s + 1.45e5·31-s + 2.30e4i·33-s + 4.98e5i·37-s + 2.43e4·39-s + ⋯
L(s)  = 1  + 0.128i·3-s − 0.777i·7-s + 0.983·9-s + 0.869·11-s − 0.511i·13-s − 0.0423i·17-s + 0.703·19-s + 0.0998·21-s − 1.46i·23-s + 0.254i·27-s + 0.632·29-s + 0.877·31-s + 0.111i·33-s + 1.61i·37-s + 0.0656·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(124.954\)
Root analytic conductor: \(11.1782\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :7/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(4)\) \(\approx\) \(2.641689411\)
\(L(\frac12)\) \(\approx\) \(2.641689411\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 6iT - 2.18e3T^{2} \)
7 \( 1 + 706iT - 8.23e5T^{2} \)
11 \( 1 - 3.84e3T + 1.94e7T^{2} \)
13 \( 1 + 4.05e3iT - 6.27e7T^{2} \)
17 \( 1 + 858iT - 4.10e8T^{2} \)
19 \( 1 - 2.10e4T + 8.93e8T^{2} \)
23 \( 1 + 8.53e4iT - 3.40e9T^{2} \)
29 \( 1 - 8.31e4T + 1.72e10T^{2} \)
31 \( 1 - 1.45e5T + 2.75e10T^{2} \)
37 \( 1 - 4.98e5iT - 9.49e10T^{2} \)
41 \( 1 + 6.89e5T + 1.94e11T^{2} \)
43 \( 1 + 8.67e5iT - 2.71e11T^{2} \)
47 \( 1 - 2.35e5iT - 5.06e11T^{2} \)
53 \( 1 - 1.83e6iT - 1.17e12T^{2} \)
59 \( 1 - 6.29e5T + 2.48e12T^{2} \)
61 \( 1 + 2.66e6T + 3.14e12T^{2} \)
67 \( 1 + 3.37e6iT - 6.06e12T^{2} \)
71 \( 1 - 2.60e6T + 9.09e12T^{2} \)
73 \( 1 + 1.62e6iT - 1.10e13T^{2} \)
79 \( 1 + 4.24e6T + 1.92e13T^{2} \)
83 \( 1 + 1.25e6iT - 2.71e13T^{2} \)
89 \( 1 + 6.29e6T + 4.42e13T^{2} \)
97 \( 1 + 3.97e6iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18034535860571850733574708646, −9.080196383641798312256534679598, −8.051750225853109995555155764720, −7.05286992875880348838450007107, −6.37040551239256555405289135435, −4.88859636592749308936874488533, −4.13418261999111771847310844318, −3.04245516703898658983458462615, −1.48768689034500290922702207743, −0.62137785189903343839745616042, 1.08319220837784420168341688010, 1.97115994278155239597015655686, 3.35886094047005869693391941490, 4.41375340021742791792672434117, 5.52263687986173720139094077828, 6.57742989355639886412391142932, 7.37357146222017900984629943505, 8.498544558564625215183580834886, 9.432850065831040625720183761916, 10.01684317929532332019209263499

Graph of the $Z$-function along the critical line