Properties

Label 2-20e2-1.1-c7-0-20
Degree $2$
Conductor $400$
Sign $1$
Analytic cond. $124.954$
Root an. cond. $11.1782$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 30.2·3-s + 161.·7-s − 1.27e3·9-s + 1.11e3·11-s + 5.15e3·13-s − 7.12e3·17-s + 3.39e4·19-s + 4.87e3·21-s − 2.44e4·23-s − 1.04e5·27-s − 1.60e4·29-s − 1.14e5·31-s + 3.38e4·33-s + 4.92e5·37-s + 1.55e5·39-s + 6.40e5·41-s − 6.93e4·43-s − 1.21e6·47-s − 7.97e5·49-s − 2.15e5·51-s + 1.38e6·53-s + 1.02e6·57-s + 2.49e6·59-s + 1.83e6·61-s − 2.05e5·63-s − 1.94e6·67-s − 7.40e5·69-s + ⋯
L(s)  = 1  + 0.645·3-s + 0.177·7-s − 0.582·9-s + 0.253·11-s + 0.650·13-s − 0.351·17-s + 1.13·19-s + 0.114·21-s − 0.419·23-s − 1.02·27-s − 0.122·29-s − 0.692·31-s + 0.163·33-s + 1.59·37-s + 0.420·39-s + 1.45·41-s − 0.132·43-s − 1.71·47-s − 0.968·49-s − 0.227·51-s + 1.28·53-s + 0.733·57-s + 1.58·59-s + 1.03·61-s − 0.103·63-s − 0.788·67-s − 0.271·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(124.954\)
Root analytic conductor: \(11.1782\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.833504149\)
\(L(\frac12)\) \(\approx\) \(2.833504149\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 30.2T + 2.18e3T^{2} \)
7 \( 1 - 161.T + 8.23e5T^{2} \)
11 \( 1 - 1.11e3T + 1.94e7T^{2} \)
13 \( 1 - 5.15e3T + 6.27e7T^{2} \)
17 \( 1 + 7.12e3T + 4.10e8T^{2} \)
19 \( 1 - 3.39e4T + 8.93e8T^{2} \)
23 \( 1 + 2.44e4T + 3.40e9T^{2} \)
29 \( 1 + 1.60e4T + 1.72e10T^{2} \)
31 \( 1 + 1.14e5T + 2.75e10T^{2} \)
37 \( 1 - 4.92e5T + 9.49e10T^{2} \)
41 \( 1 - 6.40e5T + 1.94e11T^{2} \)
43 \( 1 + 6.93e4T + 2.71e11T^{2} \)
47 \( 1 + 1.21e6T + 5.06e11T^{2} \)
53 \( 1 - 1.38e6T + 1.17e12T^{2} \)
59 \( 1 - 2.49e6T + 2.48e12T^{2} \)
61 \( 1 - 1.83e6T + 3.14e12T^{2} \)
67 \( 1 + 1.94e6T + 6.06e12T^{2} \)
71 \( 1 + 1.63e5T + 9.09e12T^{2} \)
73 \( 1 - 1.95e6T + 1.10e13T^{2} \)
79 \( 1 + 1.31e6T + 1.92e13T^{2} \)
83 \( 1 - 4.04e6T + 2.71e13T^{2} \)
89 \( 1 - 7.83e6T + 4.42e13T^{2} \)
97 \( 1 + 9.70e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.891913758078800956876015481280, −9.130404232983271572035713022492, −8.293829240346230925599470448471, −7.51616559285694248795215285244, −6.29421217747817902709576569058, −5.36074498393359574108176383258, −4.04706344501289454552570966313, −3.11404695243624213309227235565, −2.03040550949409252301936040585, −0.75243487717403128946143953758, 0.75243487717403128946143953758, 2.03040550949409252301936040585, 3.11404695243624213309227235565, 4.04706344501289454552570966313, 5.36074498393359574108176383258, 6.29421217747817902709576569058, 7.51616559285694248795215285244, 8.293829240346230925599470448471, 9.130404232983271572035713022492, 9.891913758078800956876015481280

Graph of the $Z$-function along the critical line