Properties

Label 2-20e2-5.3-c4-0-12
Degree $2$
Conductor $400$
Sign $0.850 - 0.525i$
Analytic cond. $41.3479$
Root an. cond. $6.43023$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + i)3-s + (−19 + 19i)7-s − 79i·9-s − 202·11-s + (99 + 99i)13-s + (239 − 239i)17-s + 40i·19-s − 38·21-s + (541 + 541i)23-s + (160 − 160i)27-s + 200i·29-s + 758·31-s + (−202 − 202i)33-s + (−141 + 141i)37-s + 198i·39-s + ⋯
L(s)  = 1  + (0.111 + 0.111i)3-s + (−0.387 + 0.387i)7-s − 0.975i·9-s − 1.66·11-s + (0.585 + 0.585i)13-s + (0.826 − 0.826i)17-s + 0.110i·19-s − 0.0861·21-s + (1.02 + 1.02i)23-s + (0.219 − 0.219i)27-s + 0.237i·29-s + 0.788·31-s + (−0.185 − 0.185i)33-s + (−0.102 + 0.102i)37-s + 0.130i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $0.850 - 0.525i$
Analytic conductor: \(41.3479\)
Root analytic conductor: \(6.43023\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (193, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :2),\ 0.850 - 0.525i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.737262896\)
\(L(\frac12)\) \(\approx\) \(1.737262896\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (-1 - i)T + 81iT^{2} \)
7 \( 1 + (19 - 19i)T - 2.40e3iT^{2} \)
11 \( 1 + 202T + 1.46e4T^{2} \)
13 \( 1 + (-99 - 99i)T + 2.85e4iT^{2} \)
17 \( 1 + (-239 + 239i)T - 8.35e4iT^{2} \)
19 \( 1 - 40iT - 1.30e5T^{2} \)
23 \( 1 + (-541 - 541i)T + 2.79e5iT^{2} \)
29 \( 1 - 200iT - 7.07e5T^{2} \)
31 \( 1 - 758T + 9.23e5T^{2} \)
37 \( 1 + (141 - 141i)T - 1.87e6iT^{2} \)
41 \( 1 - 1.04e3T + 2.82e6T^{2} \)
43 \( 1 + (759 + 759i)T + 3.41e6iT^{2} \)
47 \( 1 + (459 - 459i)T - 4.87e6iT^{2} \)
53 \( 1 + (-1.81e3 - 1.81e3i)T + 7.89e6iT^{2} \)
59 \( 1 - 4.60e3iT - 1.21e7T^{2} \)
61 \( 1 - 2.08e3T + 1.38e7T^{2} \)
67 \( 1 + (-5.08e3 + 5.08e3i)T - 2.01e7iT^{2} \)
71 \( 1 - 3.47e3T + 2.54e7T^{2} \)
73 \( 1 + (-3.47e3 - 3.47e3i)T + 2.83e7iT^{2} \)
79 \( 1 + 7.68e3iT - 3.89e7T^{2} \)
83 \( 1 + (-6.08e3 - 6.08e3i)T + 4.74e7iT^{2} \)
89 \( 1 - 5.68e3iT - 6.27e7T^{2} \)
97 \( 1 + (561 - 561i)T - 8.85e7iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68689138663013968532059969094, −9.708005266849248212602686325765, −9.051672661225350123619609264332, −7.970514844440842449184831378330, −6.99597750571766061785841767432, −5.89096410447756101411900770840, −4.99533928209570691286239003331, −3.53151697540289938751978429173, −2.64987863341247488337536180758, −0.886544906324745306484897915128, 0.64663781710665956281077495271, 2.31091479658257957665059452829, 3.35580476666520696700716649448, 4.82073919989512673996079293970, 5.65813194700031470701462559488, 6.89599229084264690259156278567, 7.995502519492353190216280757955, 8.377419750323141452871688536595, 9.979919091010681488928090983602, 10.49158500194937339125995954296

Graph of the $Z$-function along the critical line