Properties

Label 2-20e2-1.1-c3-0-24
Degree $2$
Conductor $400$
Sign $-1$
Analytic cond. $23.6007$
Root an. cond. $4.85806$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·3-s − 34·7-s + 22·9-s − 27·11-s + 28·13-s − 21·17-s − 35·19-s − 238·21-s − 78·23-s − 35·27-s − 120·29-s − 182·31-s − 189·33-s − 146·37-s + 196·39-s + 357·41-s − 148·43-s − 84·47-s + 813·49-s − 147·51-s − 702·53-s − 245·57-s + 840·59-s − 238·61-s − 748·63-s + 461·67-s − 546·69-s + ⋯
L(s)  = 1  + 1.34·3-s − 1.83·7-s + 0.814·9-s − 0.740·11-s + 0.597·13-s − 0.299·17-s − 0.422·19-s − 2.47·21-s − 0.707·23-s − 0.249·27-s − 0.768·29-s − 1.05·31-s − 0.996·33-s − 0.648·37-s + 0.804·39-s + 1.35·41-s − 0.524·43-s − 0.260·47-s + 2.37·49-s − 0.403·51-s − 1.81·53-s − 0.569·57-s + 1.85·59-s − 0.499·61-s − 1.49·63-s + 0.840·67-s − 0.952·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(23.6007\)
Root analytic conductor: \(4.85806\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 7 T + p^{3} T^{2} \)
7 \( 1 + 34 T + p^{3} T^{2} \)
11 \( 1 + 27 T + p^{3} T^{2} \)
13 \( 1 - 28 T + p^{3} T^{2} \)
17 \( 1 + 21 T + p^{3} T^{2} \)
19 \( 1 + 35 T + p^{3} T^{2} \)
23 \( 1 + 78 T + p^{3} T^{2} \)
29 \( 1 + 120 T + p^{3} T^{2} \)
31 \( 1 + 182 T + p^{3} T^{2} \)
37 \( 1 + 146 T + p^{3} T^{2} \)
41 \( 1 - 357 T + p^{3} T^{2} \)
43 \( 1 + 148 T + p^{3} T^{2} \)
47 \( 1 + 84 T + p^{3} T^{2} \)
53 \( 1 + 702 T + p^{3} T^{2} \)
59 \( 1 - 840 T + p^{3} T^{2} \)
61 \( 1 + 238 T + p^{3} T^{2} \)
67 \( 1 - 461 T + p^{3} T^{2} \)
71 \( 1 - 708 T + p^{3} T^{2} \)
73 \( 1 - 133 T + p^{3} T^{2} \)
79 \( 1 + 650 T + p^{3} T^{2} \)
83 \( 1 + 903 T + p^{3} T^{2} \)
89 \( 1 - 735 T + p^{3} T^{2} \)
97 \( 1 + 1106 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08378221014869929720460564273, −9.416057280281955953596376254134, −8.676545811088546017954879730489, −7.72361713912021358065088015040, −6.71187077932992454421572873710, −5.70773194360831706309944798381, −3.92013347004817529016784796320, −3.20823583862386584754947896184, −2.19092474485564712267481820880, 0, 2.19092474485564712267481820880, 3.20823583862386584754947896184, 3.92013347004817529016784796320, 5.70773194360831706309944798381, 6.71187077932992454421572873710, 7.72361713912021358065088015040, 8.676545811088546017954879730489, 9.416057280281955953596376254134, 10.08378221014869929720460564273

Graph of the $Z$-function along the critical line