Properties

Label 2-20e2-1.1-c3-0-25
Degree $2$
Conductor $400$
Sign $-1$
Analytic cond. $23.6007$
Root an. cond. $4.85806$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s + 2·7-s − 2·9-s − 39·11-s − 84·13-s + 61·17-s − 151·19-s + 10·21-s − 58·23-s − 145·27-s + 192·29-s + 18·31-s − 195·33-s + 138·37-s − 420·39-s + 229·41-s − 164·43-s − 212·47-s − 339·49-s + 305·51-s − 578·53-s − 755·57-s + 336·59-s + 858·61-s − 4·63-s − 209·67-s − 290·69-s + ⋯
L(s)  = 1  + 0.962·3-s + 0.107·7-s − 0.0740·9-s − 1.06·11-s − 1.79·13-s + 0.870·17-s − 1.82·19-s + 0.103·21-s − 0.525·23-s − 1.03·27-s + 1.22·29-s + 0.104·31-s − 1.02·33-s + 0.613·37-s − 1.72·39-s + 0.872·41-s − 0.581·43-s − 0.657·47-s − 0.988·49-s + 0.837·51-s − 1.49·53-s − 1.75·57-s + 0.741·59-s + 1.80·61-s − 0.00799·63-s − 0.381·67-s − 0.505·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(23.6007\)
Root analytic conductor: \(4.85806\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 400,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 5 T + p^{3} T^{2} \)
7 \( 1 - 2 T + p^{3} T^{2} \)
11 \( 1 + 39 T + p^{3} T^{2} \)
13 \( 1 + 84 T + p^{3} T^{2} \)
17 \( 1 - 61 T + p^{3} T^{2} \)
19 \( 1 + 151 T + p^{3} T^{2} \)
23 \( 1 + 58 T + p^{3} T^{2} \)
29 \( 1 - 192 T + p^{3} T^{2} \)
31 \( 1 - 18 T + p^{3} T^{2} \)
37 \( 1 - 138 T + p^{3} T^{2} \)
41 \( 1 - 229 T + p^{3} T^{2} \)
43 \( 1 + 164 T + p^{3} T^{2} \)
47 \( 1 + 212 T + p^{3} T^{2} \)
53 \( 1 + 578 T + p^{3} T^{2} \)
59 \( 1 - 336 T + p^{3} T^{2} \)
61 \( 1 - 858 T + p^{3} T^{2} \)
67 \( 1 + 209 T + p^{3} T^{2} \)
71 \( 1 - 780 T + p^{3} T^{2} \)
73 \( 1 - 403 T + p^{3} T^{2} \)
79 \( 1 - 230 T + p^{3} T^{2} \)
83 \( 1 + 1293 T + p^{3} T^{2} \)
89 \( 1 + 1369 T + p^{3} T^{2} \)
97 \( 1 + 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14414494571919100377156405929, −9.592344845456475752492739496436, −8.224689310321065489130005056983, −8.007946209039481790518386262374, −6.75885525509895332443465875943, −5.42191351455452004053060582519, −4.38475705027047916005275487976, −2.92202635500835945280795686299, −2.20007281798438540565244237341, 0, 2.20007281798438540565244237341, 2.92202635500835945280795686299, 4.38475705027047916005275487976, 5.42191351455452004053060582519, 6.75885525509895332443465875943, 8.007946209039481790518386262374, 8.224689310321065489130005056983, 9.592344845456475752492739496436, 10.14414494571919100377156405929

Graph of the $Z$-function along the critical line