L(s) = 1 | + (0.403 − 1.95i)2-s + (1.45 + 1.45i)3-s + (−3.67 − 1.58i)4-s + (3.44 − 2.26i)6-s + 11.3·7-s + (−4.57 + 6.55i)8-s − 4.75i·9-s + (−1.50 + 1.50i)11-s + (−3.05 − 7.66i)12-s + (0.454 − 0.454i)13-s + (4.59 − 22.3i)14-s + (11.0 + 11.6i)16-s + 1.99·17-s + (−9.30 − 1.91i)18-s + (5.07 + 5.07i)19-s + ⋯ |
L(s) = 1 | + (0.201 − 0.979i)2-s + (0.485 + 0.485i)3-s + (−0.918 − 0.395i)4-s + (0.573 − 0.377i)6-s + 1.62·7-s + (−0.572 + 0.819i)8-s − 0.527i·9-s + (−0.137 + 0.137i)11-s + (−0.254 − 0.638i)12-s + (0.0349 − 0.0349i)13-s + (0.328 − 1.59i)14-s + (0.687 + 0.726i)16-s + 0.117·17-s + (−0.516 − 0.106i)18-s + (0.267 + 0.267i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.357 + 0.933i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.357 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.95562 - 1.34541i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.95562 - 1.34541i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.403 + 1.95i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-1.45 - 1.45i)T + 9iT^{2} \) |
| 7 | \( 1 - 11.3T + 49T^{2} \) |
| 11 | \( 1 + (1.50 - 1.50i)T - 121iT^{2} \) |
| 13 | \( 1 + (-0.454 + 0.454i)T - 169iT^{2} \) |
| 17 | \( 1 - 1.99T + 289T^{2} \) |
| 19 | \( 1 + (-5.07 - 5.07i)T + 361iT^{2} \) |
| 23 | \( 1 - 41.9T + 529T^{2} \) |
| 29 | \( 1 + (-7.01 + 7.01i)T - 841iT^{2} \) |
| 31 | \( 1 + 33.3iT - 961T^{2} \) |
| 37 | \( 1 + (44.5 + 44.5i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 51.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 + (37.7 - 37.7i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 - 16.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (-67.7 - 67.7i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (-34.2 + 34.2i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + (67.1 - 67.1i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 + (-9.87 - 9.87i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 74.7T + 5.04e3T^{2} \) |
| 73 | \( 1 - 101. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 63.6iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (57.1 + 57.1i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 33.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 98.2T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94095777604767040555748397603, −10.12655244622927551687293491446, −9.067748292301371917252030453143, −8.533367342618120159248889316979, −7.38488383129738569929539744275, −5.62480006304189358936686095227, −4.71339778298321764991809620257, −3.81159280361036151084952034681, −2.54871321175922551219591855040, −1.16346992374726753168171873697,
1.44221066652975629548065956019, 3.13348645308430082168031531980, 4.85380217976362940507219674801, 5.16286509942558098538790702962, 6.80961389996111518237784282464, 7.49789561380181077506517002887, 8.421368220721358476485469476720, 8.769944010031680854894213307517, 10.30290396513637851076854830895, 11.30066826159815276621404686892