L(s) = 1 | + (−1.21 + 1.58i)2-s + (−1.92 − 1.92i)3-s + (−1.05 − 3.85i)4-s + (5.39 − 0.723i)6-s − 4.10·7-s + (7.41 + 3.00i)8-s − 1.58i·9-s + (−0.338 + 0.338i)11-s + (−5.40 + 9.46i)12-s + (11.8 − 11.8i)13-s + (4.98 − 6.53i)14-s + (−13.7 + 8.13i)16-s + 9.17·17-s + (2.51 + 1.92i)18-s + (−5.20 − 5.20i)19-s + ⋯ |
L(s) = 1 | + (−0.606 + 0.794i)2-s + (−0.641 − 0.641i)3-s + (−0.263 − 0.964i)4-s + (0.899 − 0.120i)6-s − 0.587·7-s + (0.926 + 0.376i)8-s − 0.175i·9-s + (−0.0307 + 0.0307i)11-s + (−0.450 + 0.788i)12-s + (0.912 − 0.912i)13-s + (0.356 − 0.466i)14-s + (−0.861 + 0.508i)16-s + 0.539·17-s + (0.139 + 0.106i)18-s + (−0.273 − 0.273i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.139i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.990 + 0.139i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.00838378 - 0.119275i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00838378 - 0.119275i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.21 - 1.58i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1.92 + 1.92i)T + 9iT^{2} \) |
| 7 | \( 1 + 4.10T + 49T^{2} \) |
| 11 | \( 1 + (0.338 - 0.338i)T - 121iT^{2} \) |
| 13 | \( 1 + (-11.8 + 11.8i)T - 169iT^{2} \) |
| 17 | \( 1 - 9.17T + 289T^{2} \) |
| 19 | \( 1 + (5.20 + 5.20i)T + 361iT^{2} \) |
| 23 | \( 1 + 5.92T + 529T^{2} \) |
| 29 | \( 1 + (38.8 - 38.8i)T - 841iT^{2} \) |
| 31 | \( 1 - 2.05iT - 961T^{2} \) |
| 37 | \( 1 + (38.1 + 38.1i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 40.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 + (59.8 - 59.8i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 - 57.4iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (-16.7 - 16.7i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (-9.95 + 9.95i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + (-65.8 + 65.8i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 + (85.6 + 85.6i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 70.3T + 5.04e3T^{2} \) |
| 73 | \( 1 - 73.9iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 114. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (24.0 + 24.0i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 13.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 7.27T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59890802538259259676256298609, −9.581471099058276213390908219108, −8.711778147606896834440651894771, −7.66200405802972030857663403985, −6.81438063298881258063997214872, −6.01953291689864098978525778640, −5.28444320452299489002695439710, −3.52747428541111898405162083259, −1.40600802226974624964889047640, −0.07291890474415409878800757402,
1.84138567113851834453645334737, 3.47439212197946708381175822787, 4.34795369637475668628370233680, 5.66066929578892714656594425337, 6.84441361943621252969245343004, 8.075138401463375551857608329193, 8.981377555465589693135664204488, 10.01452684113106138435037197501, 10.38107177784361589903095198370, 11.61080890094733148751505855446