L(s) = 1 | + (−0.320 + 1.37i)2-s + (0.720 − 0.720i)3-s + (−1.79 − 0.883i)4-s + (0.761 + 1.22i)6-s − 4.02·7-s + (1.79 − 2.18i)8-s + 1.96i·9-s + (−0.646 + 0.646i)11-s + (−1.92 + 0.656i)12-s + (−4.91 + 4.91i)13-s + (1.29 − 5.54i)14-s + (2.43 + 3.17i)16-s + 2.70i·17-s + (−2.70 − 0.629i)18-s + (0.438 + 0.438i)19-s + ⋯ |
L(s) = 1 | + (−0.226 + 0.973i)2-s + (0.416 − 0.416i)3-s + (−0.897 − 0.441i)4-s + (0.310 + 0.499i)6-s − 1.52·7-s + (0.633 − 0.773i)8-s + 0.653i·9-s + (−0.195 + 0.195i)11-s + (−0.557 + 0.189i)12-s + (−1.36 + 1.36i)13-s + (0.345 − 1.48i)14-s + (0.609 + 0.792i)16-s + 0.656i·17-s + (−0.636 − 0.148i)18-s + (0.100 + 0.100i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0589i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0150957 + 0.511921i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0150957 + 0.511921i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.320 - 1.37i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.720 + 0.720i)T - 3iT^{2} \) |
| 7 | \( 1 + 4.02T + 7T^{2} \) |
| 11 | \( 1 + (0.646 - 0.646i)T - 11iT^{2} \) |
| 13 | \( 1 + (4.91 - 4.91i)T - 13iT^{2} \) |
| 17 | \( 1 - 2.70iT - 17T^{2} \) |
| 19 | \( 1 + (-0.438 - 0.438i)T + 19iT^{2} \) |
| 23 | \( 1 + 3.60T + 23T^{2} \) |
| 29 | \( 1 + (2.00 + 2.00i)T + 29iT^{2} \) |
| 31 | \( 1 - 4.30T + 31T^{2} \) |
| 37 | \( 1 + (-0.743 - 0.743i)T + 37iT^{2} \) |
| 41 | \( 1 + 0.603iT - 41T^{2} \) |
| 43 | \( 1 + (5.03 + 5.03i)T + 43iT^{2} \) |
| 47 | \( 1 + 10.8iT - 47T^{2} \) |
| 53 | \( 1 + (-4.07 - 4.07i)T + 53iT^{2} \) |
| 59 | \( 1 + (1.22 - 1.22i)T - 59iT^{2} \) |
| 61 | \( 1 + (6.98 + 6.98i)T + 61iT^{2} \) |
| 67 | \( 1 + (-5.24 + 5.24i)T - 67iT^{2} \) |
| 71 | \( 1 - 13.7iT - 71T^{2} \) |
| 73 | \( 1 - 1.30T + 73T^{2} \) |
| 79 | \( 1 + 0.611T + 79T^{2} \) |
| 83 | \( 1 + (1.29 - 1.29i)T - 83iT^{2} \) |
| 89 | \( 1 - 10.9iT - 89T^{2} \) |
| 97 | \( 1 - 12.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.98796010687765722369513891147, −10.31766344519330557135813539152, −9.761144323636673958969189164151, −8.900974305206264715866999605387, −7.86595867370595483376783199127, −7.02171794016956317637360539180, −6.37160315353290884021192210947, −5.10798656212996676265992709738, −3.88710862857170588378679506407, −2.22490441718348766112016034945,
0.32605910401827250324721605998, 2.81448967958429500597683404787, 3.25238090155508771628230460449, 4.58240142944248731152398376697, 5.89438012143247437297336444323, 7.27198728567040561482747089618, 8.345554286760079962991324838564, 9.532135129687231210161402403873, 9.742507501744688653854661419264, 10.54137061199971950624757355593