L(s) = 1 | + (1.17 − 0.790i)2-s + (−1.37 + 1.37i)3-s + (0.750 − 1.85i)4-s + (−0.523 + 2.68i)6-s + 2.73i·7-s + (−0.584 − 2.76i)8-s − 0.755i·9-s + (4.12 + 4.12i)11-s + (1.51 + 3.56i)12-s + (1.37 − 1.37i)13-s + (2.16 + 3.20i)14-s + (−2.87 − 2.78i)16-s + 4.94·17-s + (−0.596 − 0.885i)18-s + (−0.292 + 0.292i)19-s + ⋯ |
L(s) = 1 | + (0.829 − 0.558i)2-s + (−0.791 + 0.791i)3-s + (0.375 − 0.926i)4-s + (−0.213 + 1.09i)6-s + 1.03i·7-s + (−0.206 − 0.978i)8-s − 0.251i·9-s + (1.24 + 1.24i)11-s + (0.436 + 1.03i)12-s + (0.382 − 0.382i)13-s + (0.577 + 0.857i)14-s + (−0.718 − 0.695i)16-s + 1.20·17-s + (−0.140 − 0.208i)18-s + (−0.0671 + 0.0671i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 - 0.397i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.917 - 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.73375 + 0.359175i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.73375 + 0.359175i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.17 + 0.790i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1.37 - 1.37i)T - 3iT^{2} \) |
| 7 | \( 1 - 2.73iT - 7T^{2} \) |
| 11 | \( 1 + (-4.12 - 4.12i)T + 11iT^{2} \) |
| 13 | \( 1 + (-1.37 + 1.37i)T - 13iT^{2} \) |
| 17 | \( 1 - 4.94T + 17T^{2} \) |
| 19 | \( 1 + (0.292 - 0.292i)T - 19iT^{2} \) |
| 23 | \( 1 - 1.64iT - 23T^{2} \) |
| 29 | \( 1 + (5.67 - 5.67i)T - 29iT^{2} \) |
| 31 | \( 1 - 3.95T + 31T^{2} \) |
| 37 | \( 1 + (2.48 + 2.48i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.40iT - 41T^{2} \) |
| 43 | \( 1 + (-3.22 - 3.22i)T + 43iT^{2} \) |
| 47 | \( 1 - 5.19T + 47T^{2} \) |
| 53 | \( 1 + (7.20 + 7.20i)T + 53iT^{2} \) |
| 59 | \( 1 + (6.41 + 6.41i)T + 59iT^{2} \) |
| 61 | \( 1 + (3.82 - 3.82i)T - 61iT^{2} \) |
| 67 | \( 1 + (5.76 - 5.76i)T - 67iT^{2} \) |
| 71 | \( 1 + 7.92iT - 71T^{2} \) |
| 73 | \( 1 + 4.36iT - 73T^{2} \) |
| 79 | \( 1 + 5.56T + 79T^{2} \) |
| 83 | \( 1 + (-0.516 + 0.516i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.42iT - 89T^{2} \) |
| 97 | \( 1 - 9.44T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46645014695427634561878319976, −10.58110366859138515759281089067, −9.772552383987584912460324088850, −9.050722280982362884756699818542, −7.33572398990398855661036054725, −6.06010504437044713013251193780, −5.42255526539953658731268283369, −4.49523271955328721118960093853, −3.42988896995041762446495027126, −1.79054081679361484003474689907,
1.14631418595028586028319466635, 3.38598971274382289952914261307, 4.29646001442211906513470597219, 5.82483041594957775840196575138, 6.29813956924835425344290786038, 7.18364648633092645208257666542, 8.034756142924629898488379022312, 9.235489074350300973771223941688, 10.74266599701970910816718696075, 11.56261496524716646388383463263