L(s) = 1 | + (−0.114 − 1.40i)2-s + (−1.42 + 1.42i)3-s + (−1.97 + 0.323i)4-s + (2.16 + 1.84i)6-s − 0.690i·7-s + (0.681 + 2.74i)8-s − 1.05i·9-s + (−3.06 − 3.06i)11-s + (2.34 − 3.26i)12-s + (2.33 − 2.33i)13-s + (−0.973 + 0.0791i)14-s + (3.79 − 1.27i)16-s + 5.28·17-s + (−1.48 + 0.120i)18-s + (5.38 − 5.38i)19-s + ⋯ |
L(s) = 1 | + (−0.0810 − 0.996i)2-s + (−0.821 + 0.821i)3-s + (−0.986 + 0.161i)4-s + (0.885 + 0.752i)6-s − 0.261i·7-s + (0.241 + 0.970i)8-s − 0.350i·9-s + (−0.922 − 0.922i)11-s + (0.678 − 0.943i)12-s + (0.648 − 0.648i)13-s + (−0.260 + 0.0211i)14-s + (0.947 − 0.318i)16-s + 1.28·17-s + (−0.349 + 0.0283i)18-s + (1.23 − 1.23i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0680 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0680 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.538091 - 0.576040i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.538091 - 0.576040i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.114 + 1.40i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1.42 - 1.42i)T - 3iT^{2} \) |
| 7 | \( 1 + 0.690iT - 7T^{2} \) |
| 11 | \( 1 + (3.06 + 3.06i)T + 11iT^{2} \) |
| 13 | \( 1 + (-2.33 + 2.33i)T - 13iT^{2} \) |
| 17 | \( 1 - 5.28T + 17T^{2} \) |
| 19 | \( 1 + (-5.38 + 5.38i)T - 19iT^{2} \) |
| 23 | \( 1 + 1.60iT - 23T^{2} \) |
| 29 | \( 1 + (-1.70 + 1.70i)T - 29iT^{2} \) |
| 31 | \( 1 + 4.69T + 31T^{2} \) |
| 37 | \( 1 + (7.89 + 7.89i)T + 37iT^{2} \) |
| 41 | \( 1 - 5.49iT - 41T^{2} \) |
| 43 | \( 1 + (-0.256 - 0.256i)T + 43iT^{2} \) |
| 47 | \( 1 - 4.60T + 47T^{2} \) |
| 53 | \( 1 + (-4.99 - 4.99i)T + 53iT^{2} \) |
| 59 | \( 1 + (-1.46 - 1.46i)T + 59iT^{2} \) |
| 61 | \( 1 + (-9.33 + 9.33i)T - 61iT^{2} \) |
| 67 | \( 1 + (-1.94 + 1.94i)T - 67iT^{2} \) |
| 71 | \( 1 - 2.32iT - 71T^{2} \) |
| 73 | \( 1 + 1.29iT - 73T^{2} \) |
| 79 | \( 1 + 5.01T + 79T^{2} \) |
| 83 | \( 1 + (7.30 - 7.30i)T - 83iT^{2} \) |
| 89 | \( 1 + 1.81iT - 89T^{2} \) |
| 97 | \( 1 + 5.27T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90788904232555033259076784986, −10.43747862750309506854679805968, −9.597670022177050276890129709639, −8.512556629895108481351367276093, −7.52789915331829415370023152929, −5.57824500314671233431939784580, −5.27490852755335844363659490768, −3.90186958528449605050217470986, −2.89195919992046329885381520121, −0.68055648327532753740146349419,
1.37641565209357362711342998438, 3.69095231959127879979907935817, 5.32833743935718286769043261734, 5.69520622202601961360324321423, 6.95343390333775479054463458237, 7.46463316791008476663062238976, 8.479700951317189326215061029590, 9.664117880870959785695505266289, 10.42530900768471604822854225031, 11.89833314857917278910273797499