Properties

Label 2-20e2-1.1-c9-0-25
Degree $2$
Conductor $400$
Sign $1$
Analytic cond. $206.014$
Root an. cond. $14.3531$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 48·3-s − 532·7-s − 1.73e4·9-s + 3.31e4·11-s + 9.96e4·13-s + 4.43e5·17-s + 3.57e5·19-s + 2.55e4·21-s − 1.42e5·23-s + 1.77e6·27-s + 1.52e6·29-s − 7.32e6·31-s − 1.59e6·33-s + 2.66e6·37-s − 4.78e6·39-s − 7.93e6·41-s − 2.11e7·43-s + 1.60e7·47-s − 4.00e7·49-s − 2.12e7·51-s + 8.78e7·53-s − 1.71e7·57-s − 1.20e8·59-s + 9.35e7·61-s + 9.24e6·63-s + 1.93e8·67-s + 6.86e6·69-s + ⋯
L(s)  = 1  − 0.342·3-s − 0.0837·7-s − 0.882·9-s + 0.683·11-s + 0.967·13-s + 1.28·17-s + 0.628·19-s + 0.0286·21-s − 0.106·23-s + 0.644·27-s + 0.401·29-s − 1.42·31-s − 0.233·33-s + 0.233·37-s − 0.331·39-s − 0.438·41-s − 0.944·43-s + 0.480·47-s − 0.992·49-s − 0.440·51-s + 1.52·53-s − 0.215·57-s − 1.29·59-s + 0.865·61-s + 0.0739·63-s + 1.17·67-s + 0.0364·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(206.014\)
Root analytic conductor: \(14.3531\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.006002168\)
\(L(\frac12)\) \(\approx\) \(2.006002168\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 16 p T + p^{9} T^{2} \)
7 \( 1 + 76 p T + p^{9} T^{2} \)
11 \( 1 - 33180 T + p^{9} T^{2} \)
13 \( 1 - 99682 T + p^{9} T^{2} \)
17 \( 1 - 443454 T + p^{9} T^{2} \)
19 \( 1 - 357244 T + p^{9} T^{2} \)
23 \( 1 + 142956 T + p^{9} T^{2} \)
29 \( 1 - 1527966 T + p^{9} T^{2} \)
31 \( 1 + 7323416 T + p^{9} T^{2} \)
37 \( 1 - 2666842 T + p^{9} T^{2} \)
41 \( 1 + 7939014 T + p^{9} T^{2} \)
43 \( 1 + 21174520 T + p^{9} T^{2} \)
47 \( 1 - 16059636 T + p^{9} T^{2} \)
53 \( 1 - 87822234 T + p^{9} T^{2} \)
59 \( 1 + 120625212 T + p^{9} T^{2} \)
61 \( 1 - 93576542 T + p^{9} T^{2} \)
67 \( 1 - 193621688 T + p^{9} T^{2} \)
71 \( 1 + 417763488 T + p^{9} T^{2} \)
73 \( 1 - 450372742 T + p^{9} T^{2} \)
79 \( 1 - 91425472 T + p^{9} T^{2} \)
83 \( 1 + 652637376 T + p^{9} T^{2} \)
89 \( 1 + 170059206 T + p^{9} T^{2} \)
97 \( 1 - 10947022 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.749525865692314659007315156693, −8.837069644392388998928311475449, −8.010709638688697722595558830435, −6.87229520800133460796989659210, −5.91466058314158829280639463129, −5.24539405938929950524115270599, −3.82505513245641827910266258987, −3.05395754903153642530994267959, −1.57816256441185573887217041389, −0.62955186117501940175871814587, 0.62955186117501940175871814587, 1.57816256441185573887217041389, 3.05395754903153642530994267959, 3.82505513245641827910266258987, 5.24539405938929950524115270599, 5.91466058314158829280639463129, 6.87229520800133460796989659210, 8.010709638688697722595558830435, 8.837069644392388998928311475449, 9.749525865692314659007315156693

Graph of the $Z$-function along the critical line