L(s) = 1 | − 48·3-s − 532·7-s − 1.73e4·9-s + 3.31e4·11-s + 9.96e4·13-s + 4.43e5·17-s + 3.57e5·19-s + 2.55e4·21-s − 1.42e5·23-s + 1.77e6·27-s + 1.52e6·29-s − 7.32e6·31-s − 1.59e6·33-s + 2.66e6·37-s − 4.78e6·39-s − 7.93e6·41-s − 2.11e7·43-s + 1.60e7·47-s − 4.00e7·49-s − 2.12e7·51-s + 8.78e7·53-s − 1.71e7·57-s − 1.20e8·59-s + 9.35e7·61-s + 9.24e6·63-s + 1.93e8·67-s + 6.86e6·69-s + ⋯ |
L(s) = 1 | − 0.342·3-s − 0.0837·7-s − 0.882·9-s + 0.683·11-s + 0.967·13-s + 1.28·17-s + 0.628·19-s + 0.0286·21-s − 0.106·23-s + 0.644·27-s + 0.401·29-s − 1.42·31-s − 0.233·33-s + 0.233·37-s − 0.331·39-s − 0.438·41-s − 0.944·43-s + 0.480·47-s − 0.992·49-s − 0.440·51-s + 1.52·53-s − 0.215·57-s − 1.29·59-s + 0.865·61-s + 0.0739·63-s + 1.17·67-s + 0.0364·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(2.006002168\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.006002168\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 16 p T + p^{9} T^{2} \) |
| 7 | \( 1 + 76 p T + p^{9} T^{2} \) |
| 11 | \( 1 - 33180 T + p^{9} T^{2} \) |
| 13 | \( 1 - 99682 T + p^{9} T^{2} \) |
| 17 | \( 1 - 443454 T + p^{9} T^{2} \) |
| 19 | \( 1 - 357244 T + p^{9} T^{2} \) |
| 23 | \( 1 + 142956 T + p^{9} T^{2} \) |
| 29 | \( 1 - 1527966 T + p^{9} T^{2} \) |
| 31 | \( 1 + 7323416 T + p^{9} T^{2} \) |
| 37 | \( 1 - 2666842 T + p^{9} T^{2} \) |
| 41 | \( 1 + 7939014 T + p^{9} T^{2} \) |
| 43 | \( 1 + 21174520 T + p^{9} T^{2} \) |
| 47 | \( 1 - 16059636 T + p^{9} T^{2} \) |
| 53 | \( 1 - 87822234 T + p^{9} T^{2} \) |
| 59 | \( 1 + 120625212 T + p^{9} T^{2} \) |
| 61 | \( 1 - 93576542 T + p^{9} T^{2} \) |
| 67 | \( 1 - 193621688 T + p^{9} T^{2} \) |
| 71 | \( 1 + 417763488 T + p^{9} T^{2} \) |
| 73 | \( 1 - 450372742 T + p^{9} T^{2} \) |
| 79 | \( 1 - 91425472 T + p^{9} T^{2} \) |
| 83 | \( 1 + 652637376 T + p^{9} T^{2} \) |
| 89 | \( 1 + 170059206 T + p^{9} T^{2} \) |
| 97 | \( 1 - 10947022 T + p^{9} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.749525865692314659007315156693, −8.837069644392388998928311475449, −8.010709638688697722595558830435, −6.87229520800133460796989659210, −5.91466058314158829280639463129, −5.24539405938929950524115270599, −3.82505513245641827910266258987, −3.05395754903153642530994267959, −1.57816256441185573887217041389, −0.62955186117501940175871814587,
0.62955186117501940175871814587, 1.57816256441185573887217041389, 3.05395754903153642530994267959, 3.82505513245641827910266258987, 5.24539405938929950524115270599, 5.91466058314158829280639463129, 6.87229520800133460796989659210, 8.010709638688697722595558830435, 8.837069644392388998928311475449, 9.749525865692314659007315156693