| L(s) = 1 | + (−0.448 + 0.258i)2-s + (−0.366 + 0.633i)4-s − 0.896i·8-s + (1.67 − 0.965i)11-s + (−0.133 − 0.232i)16-s + (−0.500 + 0.866i)22-s + (−1.22 − 0.707i)23-s + (−0.5 − 0.866i)25-s + (1.22 − 0.707i)29-s + (0.896 + 0.517i)32-s − 1.73·37-s + (−0.866 − 1.5i)43-s + 1.41i·44-s + 0.732·46-s + (0.448 + 0.258i)50-s + ⋯ |
| L(s) = 1 | + (−0.448 + 0.258i)2-s + (−0.366 + 0.633i)4-s − 0.896i·8-s + (1.67 − 0.965i)11-s + (−0.133 − 0.232i)16-s + (−0.500 + 0.866i)22-s + (−1.22 − 0.707i)23-s + (−0.5 − 0.866i)25-s + (1.22 − 0.707i)29-s + (0.896 + 0.517i)32-s − 1.73·37-s + (−0.866 − 1.5i)43-s + 1.41i·44-s + 0.732·46-s + (0.448 + 0.258i)50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.819 + 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.819 + 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8477918462\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8477918462\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (0.448 - 0.258i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-1.67 + 0.965i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 1.73T + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + 1.93iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + 0.517iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.385470264595209671142209801942, −8.237645013807945543925275271263, −6.98246873226578366144171423224, −6.57916332452442307471428797826, −5.80864556962423157329483888029, −4.61353917208275076085172978257, −3.88197138031638689728588961451, −3.34083136747838564926186375780, −2.01718718337560051501795579784, −0.60559291233683419718133442488,
1.36503174113367518750947159418, 1.85334597071646929283288854173, 3.28093912669878863784203887205, 4.23201243900622063641648084099, 4.86257874089898903256049191863, 5.80958416213657755846038241840, 6.48754979548059073902629156622, 7.24852598956582805701942972711, 8.129361617930492903575990050059, 8.946234966296008176312904784662