L(s) = 1 | + (1.19 + 3.66i)5-s + (0.190 + 0.138i)7-s + (−3.30 − 0.224i)11-s + (−1.92 + 5.93i)13-s + (−0.736 − 2.26i)17-s + (4.11 − 2.99i)19-s + 0.236·23-s + (−7.97 + 5.79i)25-s + (3.61 + 2.62i)29-s + (−1.97 + 6.06i)31-s + (−0.281 + 0.865i)35-s + (3.04 + 2.21i)37-s + (7.66 − 5.56i)41-s + 9.47·43-s + (2.92 − 2.12i)47-s + ⋯ |
L(s) = 1 | + (0.532 + 1.63i)5-s + (0.0721 + 0.0524i)7-s + (−0.997 − 0.0676i)11-s + (−0.534 + 1.64i)13-s + (−0.178 − 0.549i)17-s + (0.944 − 0.686i)19-s + 0.0492·23-s + (−1.59 + 1.15i)25-s + (0.671 + 0.488i)29-s + (−0.354 + 1.09i)31-s + (−0.0475 + 0.146i)35-s + (0.500 + 0.363i)37-s + (1.19 − 0.869i)41-s + 1.44·43-s + (0.426 − 0.310i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0219 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0219 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.946065 + 0.925491i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.946065 + 0.925491i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (3.30 + 0.224i)T \) |
good | 5 | \( 1 + (-1.19 - 3.66i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-0.190 - 0.138i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (1.92 - 5.93i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (0.736 + 2.26i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-4.11 + 2.99i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 0.236T + 23T^{2} \) |
| 29 | \( 1 + (-3.61 - 2.62i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (1.97 - 6.06i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-3.04 - 2.21i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-7.66 + 5.56i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 9.47T + 43T^{2} \) |
| 47 | \( 1 + (-2.92 + 2.12i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (2.02 - 6.24i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-1.73 - 1.26i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (0.809 + 2.48i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 0.145T + 67T^{2} \) |
| 71 | \( 1 + (-0.427 - 1.31i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (2.61 + 1.90i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-4.39 + 13.5i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (4.78 + 14.7i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + T + 89T^{2} \) |
| 97 | \( 1 + (1.57 - 4.84i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.29521053381075743016219405029, −10.68541031461201324212259317762, −9.786442046067160967132694997287, −8.974257002601614948631534450117, −7.36522311145941299570911195589, −7.01793187072569740014196318802, −5.89682151781803570345903390949, −4.69388884092043938640256424435, −3.10162850736509162765078815712, −2.24583532362425862651233854821,
0.892661504071150381320005476610, 2.57695755750749628541181171258, 4.29634760828092605867898064219, 5.36614886679301631462200702690, 5.83730220338691573113281123472, 7.80741524380577023545258765176, 8.080011065051070081025793445283, 9.370533530028134562307519754992, 9.970885298068377765243593165122, 10.97871546940621577073292177875