L(s) = 1 | + (−3.20 + 1.84i)3-s + (0.549 + 0.317i)5-s + (2.32 − 4.03i)9-s + (−6.65 − 11.5i)11-s + 21.5i·13-s − 2.34·15-s + (−5.30 + 3.06i)17-s + (−17.1 − 9.87i)19-s + (14.3 − 24.7i)23-s + (−12.2 − 21.3i)25-s − 16.0i·27-s + 37.3·29-s + (18.1 − 10.4i)31-s + (42.6 + 24.6i)33-s + (11.9 − 20.7i)37-s + ⋯ |
L(s) = 1 | + (−1.06 + 0.615i)3-s + (0.109 + 0.0634i)5-s + (0.258 − 0.448i)9-s + (−0.605 − 1.04i)11-s + 1.65i·13-s − 0.156·15-s + (−0.311 + 0.180i)17-s + (−0.900 − 0.519i)19-s + (0.622 − 1.07i)23-s + (−0.491 − 0.852i)25-s − 0.594i·27-s + 1.28·29-s + (0.584 − 0.337i)31-s + (1.29 + 0.745i)33-s + (0.323 − 0.560i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0633 + 0.997i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.373278 - 0.350341i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.373278 - 0.350341i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (3.20 - 1.84i)T + (4.5 - 7.79i)T^{2} \) |
| 5 | \( 1 + (-0.549 - 0.317i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (6.65 + 11.5i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 - 21.5iT - 169T^{2} \) |
| 17 | \( 1 + (5.30 - 3.06i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (17.1 + 9.87i)T + (180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-14.3 + 24.7i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 - 37.3T + 841T^{2} \) |
| 31 | \( 1 + (-18.1 + 10.4i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-11.9 + 20.7i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + 70.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 46T + 1.84e3T^{2} \) |
| 47 | \( 1 + (0.909 + 0.525i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-7.68 - 13.3i)T + (-1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-12.8 + 7.44i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (75.1 + 43.3i)T + (1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (12.3 + 21.3i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 45.0T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-44.8 + 25.8i)T + (2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-16.8 + 29.1i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 - 77.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (68.2 + 39.3i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + 90.1iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83216923989981733952615598760, −10.30846086836091327496156259200, −9.069184855566101224274322370886, −8.277308075908355541208479090703, −6.68452032708274193534867905582, −6.12981552323867562705490383641, −4.91151689308019684077183164694, −4.17452476320968715918489883914, −2.42738235388866871075435004311, −0.27211224207368812287082756723,
1.31439951705325215431779645289, 2.98698634466920065113493840883, 4.76033075232989629817993211059, 5.56478483083347756013862532305, 6.50352333927504683221176144936, 7.46267865647676424821228812750, 8.323050213966281521802099843237, 9.772184863001428150019605185908, 10.46791871405747403351101993532, 11.38757549435508604413680462822