L(s) = 1 | + (0.707 − 1.22i)2-s + (2.26 + 1.30i)3-s + (−0.999 − 1.73i)4-s + (1.60 + 2.77i)5-s + (3.20 − 1.84i)6-s − 2.82·8-s + (1.91 + 3.31i)9-s + 4.52·10-s + (1 − 1.73i)11-s − 5.22i·12-s − 5.07·13-s + 8.36i·15-s + (−2.00 + 3.46i)16-s + (−0.274 − 0.158i)17-s + 5.41·18-s + (4.13 − 2.38i)19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.866i)2-s + (1.30 + 0.754i)3-s + (−0.499 − 0.866i)4-s + (0.715 + 1.23i)5-s + (1.30 − 0.754i)6-s − 0.999·8-s + (0.638 + 1.10i)9-s + 1.43·10-s + (0.301 − 0.522i)11-s − 1.50i·12-s − 1.40·13-s + 2.15i·15-s + (−0.500 + 0.866i)16-s + (−0.0665 − 0.0384i)17-s + 1.27·18-s + (0.949 − 0.548i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 + 0.188i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.982 + 0.188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.57789 - 0.245184i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.57789 - 0.245184i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 1.22i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-2.26 - 1.30i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.60 - 2.77i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 5.07T + 13T^{2} \) |
| 17 | \( 1 + (0.274 + 0.158i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.13 + 2.38i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.24 - 0.717i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 9.37iT - 29T^{2} \) |
| 31 | \( 1 + (1.32 - 2.29i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.12 + 1.22i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 4.46iT - 41T^{2} \) |
| 43 | \( 1 + 8.82T + 43T^{2} \) |
| 47 | \( 1 + (-2.65 - 4.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3 + 1.73i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.26 - 1.30i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.98 + 3.44i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6 - 10.3i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-1.21 - 0.699i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-10.2 + 5.91i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 8.47iT - 83T^{2} \) |
| 89 | \( 1 + (8.55 - 4.93i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 3.82iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14345304146768425141312721728, −10.11782974236006095126177230212, −9.762243428097121794785173080226, −8.992583829181240535130573484382, −7.65635210460627887068612488517, −6.40017531365964438297622233396, −5.14241972464519669882469495661, −3.89240958156620867380961484308, −2.90908270449910520266204144177, −2.30341511599795589282870391887,
1.76009892583259562989946231930, 3.14035176331194501768954292421, 4.61163912412591879440921713705, 5.46192513733399870189633544172, 6.83825530640370413275951557816, 7.61292530731853593554422228553, 8.426790571914545173429663147274, 9.239908442384282836371801840736, 9.785991101136904684804457599387, 12.02302396257065318408789039715